
 

 

  

David Benjamin Gomez 
NSTRF VTE | Summer 2020 

ON ELECTRIC PROPULSION THRUST STANDS: 
COMPREHENSIVE UNCERTAINTY ANALYSIS 
AND MODERNIZED CONCEPTUAL DESIGN  
 



1 
 

Table of Contents 
1. Introduction .......................................................................................................................................... 2 

1.1. Background ................................................................................................................................... 2 

1.2. Governing equations ..................................................................................................................... 2 

1.3. Owens thrust stand ........................................................................................................................ 7 

2. Uncertainty Analysis .......................................................................................................................... 10 

2.1. Classification ............................................................................................................................... 10 

2.2. Treatment .................................................................................................................................... 12 

2.2.1. Random uncertainties .......................................................................................................... 12 

2.2.2. Systematic uncertainties ...................................................................................................... 15 

2.3. Propagation and combination ...................................................................................................... 16 

2.4. Thrust stand calibration ............................................................................................................... 18 

2.4.1. Response variable and predictor variable ............................................................................ 19 

2.4.2. Confidence and prediction intervals for uncertainty analysis ............................................. 21 

2.5. Thrust measurements ................................................................................................................... 28 

2.6. Random uncertainty .................................................................................................................... 29 

2.7. Systematic uncertainty ................................................................................................................ 29 

2.7.1. Thermal effects .................................................................................................................... 30 

2.7.2. Thrust stand inclination ....................................................................................................... 31 

2.7.3. Misalignment of thrust vector ............................................................................................. 32 

2.7.4. Other sources ....................................................................................................................... 33 

2.8. Total uncertainty ......................................................................................................................... 33 

3. Conceptual Design .............................................................................................................................. 34 

3.1. Brief configuration trade study ................................................................................................... 34 

3.1.1. Preliminary design constraints ............................................................................................ 36 

3.1.2. Torsional pendulum ............................................................................................................. 36 

3.1.3. Hanging pendulum .............................................................................................................. 37 

3.1.4. Inverted pendulum ............................................................................................................... 37 

3.1.5. Displacement-mode vs null-mode ....................................................................................... 38 

3.2. Preliminary design recommendations ......................................................................................... 39 

4. Conclusions ........................................................................................................................................ 40 

 

  



2 
 

1. Introduction 
1.1. Background 
Due to the low thrust-to-weight ratios characteristic of all electric propulsion (EP) devices, obtaining 
accurate measurements of thrust is a difficult task, despite its importance for performance analysis, thruster 
qualification, and flight program planning. Most state-of-the-art electric propulsion testing facilities employ 
pendulum thrust stands—whereby the thrust is measured indirectly, or inferred, from the motion of a 
pendulum mechanism. These devices have exhibited excellent performance across a wide range of EP 
thruster sizes and thrust levels. Pendulum thrust stands typically assume one of three forms: torsional 
pendulums (TP), hanging pendulums (HP), and inverted pendulums (IP). There is no pendulum mechanism 
that is best suited for all thrusters, as each exhibits their own unique advantages and challenges, and no 
single pendulum mechanism can be attributed as inherently more accurate than any other, as the uncertainty 
quantification depends largely on the details of the mechanical design and operational practices. 

NASA JPL’s primary electric propulsion testing facility, Owens, which is currently employing an inverted 
pendulum thrust stand, is leading the development and qualification of the Hall-Effect Rocket with 
Magnetic-Shielding (HERMES) beginning with the technology demonstration and engineering 
development units. These thrusters, which are approaching the 100 kg class, are the largest and hottest 
thrusters that the Owens thrust stand has ever accommodated, and they introduce additional challenges to 
the thrust measurement process and have invoked unconventional techniques to mitigate unduly large thrust 
stand uncertainties.  

With the ultimate goal of developing an entirely new modernized thrust stand designed specifically for the 
high-power EP test campaigns currently queued for the Owens facility, in this report, we express critics of 
the existing thrust stand as well as a proposed conceptual design for the new thrust stand. In an effort to 
standardize uncertainty analysis techniques within the EP community, we also provided a detailed tutorial 
on uncertainty analysis techniques for EP thrust stands. This report is organized as follows. In Section 1.2 
and Section 1.3, we provide some background information on the dynamics of pendulum thrust stands and 
an overview of the current thrust stand design for the Owens facility.1  In Section 2, we provide an 
uncertainty analysis tutorial for EP thrust stands, such as the one employed by Owens. In Section 2.8, we 
present our proposed conceptual design for a modernized thrust stand for high-power EP testing with 
several design recommendations. Finally, in Section 4, we conclude the work. 

1.2. Governing equations 
The three forms of pendulum thrust stands (torsional, hanging, and inverted) all share a common aspect: 
they are rotational systems and thus are governed by the rotational spring-mass-damper equation of motion. 

 

𝐼�̈� + 𝑐�̇� + 𝑘!𝜃 = ∑𝜏 Equation 1 
  

 
1These sections may be skipped for the reader already familiar with the dynamics of pendulum thrust and the Owens 
thrust stand. 
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⎪
⎧
	𝐼:		𝑚𝑜𝑚𝑒𝑛𝑡	𝑜𝑓	𝑖𝑛𝑒𝑟𝑡𝑖𝑎
	𝑐:		𝑑𝑎𝑚𝑝𝑖𝑛𝑔	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
	𝑘!:		𝑎𝑛𝑔𝑢𝑙𝑎𝑟	𝑠𝑝𝑟𝑖𝑛𝑔	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
	𝜃:		𝑎𝑛𝑔𝑢𝑙𝑎𝑟	𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
	∑𝜏:		𝑠𝑢𝑚	𝑜𝑓	𝑡𝑜𝑟𝑞𝑢𝑒𝑠	𝑎𝑏𝑜𝑢𝑡	𝑝𝑖𝑣𝑜𝑡

 

 

 

The fundamental difference between each pendulum type is the effect that gravity has on the dynamics of 
the system. Shown in Figure 1 are schematics of the dynamics of torsional, hanging, and inverted 
pendulums. 

 

 
Figure 1. Schematics of (a) torsional, (b) hanging, and (c) inverted pendulum thrust stands. 

As depicted in the torsional pendulum in Figure 1a, the force due to gravity is orthogonal to the XY plane 
of rotation, and the motion of the pendulum is unaffected by gravity. Thus, the sum of torques about the 
pivot is simply the applied force times the length of the pendulum2. 

 

𝜏" = 𝐹𝐿  
⇒  

∑𝜏#$ = 	𝐹𝐿 Equation 2 
 

In contrast, in the hanging pendulum depicted in Figure 1b, we see that the force due to gravity can be 
decomposed into two components, one parallel to the pendulum arm, and the other orthogonal. The parallel 
component of the force due to gravity is absorbed via the tension in the pendulum arm, but the orthogonal 
component creates a torque about the pivot that counteracts the torque due to the applied force. Thus, the 
sum of torques about the pivot is the difference between the torque due to the applied force and the torque 
due to gravity. 

 

𝜏" = 𝐹𝐿  
𝜏% = 𝑚𝑔𝐿 sin(𝜃) ≈ 𝑚𝑔𝐿𝜃  

 
2 Note that the applied force is assumed to be perpendicular to the pendulum. Hanging and inverted pendulum thrust 
stands are often constructed using parallel linkages, which keep thrust vector horizontal throughout the range of 
motion. State-of-the-art thrust stands maintain very small deflections (less than 1 degree), so we can assume the thrust 
is orthogonal to the pendulum arm throughout the range of motion without significant error—more on this later. 
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⇒  
∑𝜏&$ = 𝐹𝐿 −𝑚𝑔𝐿𝜃 Equation 3 

  
Similarly, from the inverted pendulum in Figure 1c, we see that the gravitational force decomposition yields 
a component parallel to the pendulum arm, which is absorbed via the compression in the arm, and a 
component perpendicular to the pendulum arm. This time however, the orthogonal component is in the 
same direction as applied force and amplifies the deflection. Thus, the sum of torques about the pivot in 
this case is the sum of the torques due to the applied force and due to gravity. 

 

𝜏" = 𝐹𝐿  
𝜏% = 𝑚𝑔𝐿 sin(𝜃) ≈ 𝑚𝑔𝐿𝜃  

⇒  
∑𝜏'$ = 𝐹𝐿 +𝑚𝑔𝐿𝜃  Equation 4 

 

Using our expressions for the sum of torques for each type of pendulum, we can re-write the general 
equation of motion for pendulum thrust stands (Equation 1) as follows. 

 

𝐼�̈� + 𝑐�̇� + 𝑘!𝜃 = M	
∑𝜏#$ 𝑓𝑜𝑟	𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
∑𝜏&$ 𝑓𝑜𝑟	ℎ𝑎𝑛𝑔𝑖𝑛𝑔	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
∑𝜏'$ 𝑓𝑜𝑟	𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠

 
 

  
⇔  

  

𝐼�̈� + 𝑐�̇� + 𝑘!𝜃 = M	
𝐹𝐿 𝑓𝑜𝑟	𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
𝐹𝐿 −𝑚𝑔𝐿𝜃 𝑓𝑜𝑟	ℎ𝑎𝑛𝑔𝑖𝑛𝑔	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
𝐹𝐿 +𝑚𝑔𝐿𝜃 𝑓𝑜𝑟	𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠

 Equation 5 

 

Notice that for hanging and inverted pendulums, there is a term on the right-hand-side (RHS) that shares a 
𝜃 with the angular spring constant term on the left-hand-side (LHS). By combining these 𝜃-terms on the 
LHS, we can see another way of interpreting the effect of gravity on the thrust stand dynamics. Instead of 
construing the effect of gravity as an additional torque, since we are assuming small angles, the effect of 
gravity can also be interpreted as either increasing the effective angular spring constant for hanging 
pendulums or decreasing the effective spring constant for inverted pendulums. By defining the effective 
angular spring constant 𝑘 as the sum of the (original) angular spring constant and the gravitational spring 
constant, we see that the only difference between the governing equations of the three types of pendulum 
thrust stands is in the expression for the effective angular spring constant. 

 

𝐼�̈� + 𝑐�̇� + 𝑘𝜃 = 𝐹𝐿  

𝑤ℎ𝑒𝑟𝑒  

𝑘 = M	
𝑘! 𝑓𝑜𝑟	𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
𝑘! +𝑚𝑔𝐿 𝑓𝑜𝑟	ℎ𝑎𝑛𝑔𝑖𝑛𝑔	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
𝑘! −𝑚𝑔𝐿 𝑓𝑜𝑟	𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠

 Equation 6 
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Equation 6 will be useful during our configuration trade study in Section 3.1. For torsional pendulum thrust 
stands, gravity and the system dynamics are decoupled, and the effective angular spring constant is simply 
the original angular spring constant. For hanging pendulums, the restoring torque due to gravity increases 
with—and counteracts—the deflection of the thrust stand, which can be construed as a higher effective 
angular spring constant. Finally, for inverted pendulums, the torque due to gravity also increases with—but 
amplifies—the deflection of the thrust stand, which can be construed as a lower effective angular spring 
constant.  

In steady-state, the angular acceleration and angular velocity terms equal zero, and the steady-state 
deflection 𝜃(( for each pendulum type can be obtained with the following expression. 

 

𝑘𝜃(( = 𝐹𝐿  
  
⇒  
  

𝜃(( =
𝐹𝐿
𝑘
= M	

𝐹𝐿 𝑓𝑜𝑟	𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
𝐹𝐿 (𝑘! +𝑚𝑔𝐿⁄ ) 𝑓𝑜𝑟	ℎ𝑎𝑛𝑔𝑖𝑛𝑔	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
𝐹𝐿/(𝑘! −𝑚𝑔𝐿) 𝑓𝑜𝑟	𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠

 Equation 7 

 

All else constant, we see from Equation 7 that hanging pendulums exhibit smaller steady-state deflections 
than inverted pendulums. One important characteristic of inverted pendulums is at once a benefit and a risk 
factor: inverted pendulums are unstable. The negative sign in the denominator of the expression for the 
stead-state deflection of inverted pendulums means that as 𝑚𝑔𝐿 approaches 𝑘! , the deflection goes to 
infinity. Careful balancing of the angular spring constant (adjusted with linear or torsional springs) and the 
mass of the thrust stand (adjusted using mass ballast) can afford relatively small effective angular spring 
constants and correspondingly large deflections, which is beneficial for increasing the sensitivity and 
resolution of thrust stands. As the deflections become excessively large however, the small angle 
assumption breaks down and significant systematic errors might incur. State-of-the-art inverted pendulum 
thrust stands typically deflect less than 1°, which afford reasonably low errors due to the small angle 
assumption, i.e., (sinq	-	q)/q	£	0.13%	for	q	£	5°. 

With our compact expression for the pendulum dynamics for each pendulum thrust stand (Equation 6), we 
can write the equation of the motion in standard form to obtain expressions for the damping coefficient and 
the natural frequency. 

 

𝐼�̈� + 𝑐�̇� + 𝑘𝜃 = 𝐹𝐿  
  
⇔  

  

�̈� +
𝑐
𝐼
�̇� +

𝑘
𝐼
𝜃 =

𝐹𝐿
𝐼

 Equation 8 

 

The undamped natural frequency and damping coefficient are defined as follows. 
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𝜔) ≡ _𝑘
𝐼
 Equation 9 

  

𝜁 ≡
𝑐
2
_ 1
𝐼𝑘

 Equation 10 

  
⇒  
  

�̈� + 2𝜁𝜔)�̇� + 𝜔)*𝜃 =
𝐹𝐿
𝐼

 Equation 11 

  
If we model the thrust stands as a rod-mass system, then 𝐼 = 𝑚𝐿*. The solution to is 𝜃 = 𝜃(𝑡), which is 
temporal response of the thrust stand subject to some 𝐹 = 𝐹(𝑡). Since the determination of the effective 
spring constant, moment of inertia, and damping constant is not trivial, end-to-end calibrations are 
conducted that statistically “learn” the relationship between the steady-state deflection of the thrust stand 
and the applied force giving 𝐹 = 𝐹(𝜃), or more practically (as we will see), 𝐹 = 𝐹(𝑥).  

Going back to our expression for the steady-state deflection (Equation 7), the angular sensitivity is defined 
as the steady-state angular displacement over the applied force. 

 

𝜃(( =
𝐹𝐿
𝑘

  

  
⇒  
  

𝑆! ≡
𝜃((
𝐹
=
𝐿
𝑘

 Equation 12 

 

However, it often much more convenient to measure the linear deflection as opposed to the angular 
deflection. Assuming the deflection is made at a distance 𝐿 from the pivot point, the linear steady-state 
deflection would be as follows3. Note that we again assume small angles. 

 

𝑥(( = 𝐿 sin(𝜃(() ≈ 𝐿𝜃(( =
𝐹𝐿*

𝑘
 Equation 13 

 

The linear sensitivity, which is the most commonly reported form of thrust stand sensitivity, is defined as 
the steady-state linear displacement over the applied force. 

 

 
3 Note that the depictions in Figure 1 show deflections in the different directions, but for simplicity’s sake, we will 
henceforth assume that all “linear deflections” are in the “x”-direction. 
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𝑆+ ≡
𝑥((
𝐹
=
𝐿*

𝑘
	 Equation 14 

	

From Equation 14, we see that in general we can achieve higher sensitivities by designing larger thrust 
stands or by using lower effective angular spring constants. This is why inverted pendulums are appealing: 
because the effective angular spring constant of inverted pendulums is the difference between two terms 
(𝑘'$ = 𝑘! −𝑚𝑔𝐿), we can design 𝑘! , 𝑚, 𝑎𝑛𝑑	𝐿, such that the denominator of Equation 14 is arbitrarily 
small, and the linear sensitivity is correspondingly large. Care must be taken to ensure that 𝑘! > 𝑚𝑔𝐿, lest 
the thrust stand become unstable. 

1.3. Owens thrust stand 
The Owens thrust stand currently employs a displacement-type, parallel-linkage, inverted pendulum thrust 
stand. The thrust stand is shown in Figure 2, and a schematic is shown in Figure 3. 

 
Figure 2. NASA JPL’s Owens thrust stand (with the magnetically shielded H9 onboard). 
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Figure 3. Schematic of NASA JPL’s Owens thrust stand (with notional Hall thruster onboard). 

There are plenty of excellent qualities about this thrust stand that make it a “state-of-the-art” inverted 
pendulum thrust stand. For example, Owens’ thrust stand features an in-situ calibration system composed 
of a pulley-weight system; it features closed-loop inclination, damping, and thermal controllers, and uses a 
high-precision Linear Variable Differential Transducer (LVDT) to monitor the thrust stand displacement. 
However, there are also several unsavory design features that deserve attention; these are listed and briefly 
described next. 

1. Thruster mounting subsystem. The thruster mounting system consists of several interacting 
components: the thruster, the power line tower, the thruster mounting plate, the thruster cooling 
column. Sitting on top of a single column, the thruster mounting plate is a thin (4 mm) aluminum 
plate that supports the weight of the thruster and power line tower and all the associated harnessing. 
The power line tower (upper right of Figure 3) is ~0.7 m tall 80/20 assembly and weighs enough 
such that the thruster mounted plate tilts, sometimes to the point where it contacts the stationary 
copper cooling shroud. This tilting can cause several issues: it can add signification friction to the 
motion of the thrust stand, reducing the deflection, thus leading to erroneously low reported thrusts; 
additionally, it can cause a misalignment between the thrust vector and the intended direction of 
motion, again, leading to erroneously low reported thrusts. Furthermore, the weight of the power 
line tower pulls the center of mass towards the right (in Figure 3). Were the center of mass to drift 
outside the parallel pendulum arms, the thrust stand would topple over. This failure mode is made 
all the more probable given the narrowness of the parallel linkage pendulum, spanning roughly the 
axial “depth” of the HERMeS, as indicated in Figure 3. While the weight of the HERMeS has thus 
far kept the center of mass above the pendulum system, this may not be the case for smaller 
thrusters. Also related to the power line tower are the power harnesses themselves: they are in-line 
with the direction of thrust and ass they heat up and cool down (due to resistive or Ohmic heating) 
they expand and contract, pushing and pulling on the thrust stand. 
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2. Mechanical subsystems. The majority of the Owens thrust stand is fabricated from thin Aluminum 
structures. Given the inevitable temperature variability inherent in all thrust stands, Aluminum may 
not be the best material choice given its rather large coefficient of thermal expansion. There are 
also mechanical structures that are inherently weak in their design. For example, the inclination 
pivot point is a 1/4”-20 threaded rod that has been carved on either side to create a literal weak 
point in the rod about which the entire thrust stand pivots. There is simply no easy way to determine 
the reliability of this mechanical feature. What is more, the location of the inclination pivot is more 
or less in the center of the thrust stand. Given that the thrust stand center of mass is likely to drift 
left or right, it is not certain which way the thrust stand will tilt if subject to inclination drifts. 
Furthermore, in order to provide higher sensitivity, the steel strip flexures are very thin, which 
raises concern for column buckling as the weight of the thrusters under test continues to approach 
the 100-kg class. There is also the aluminum wave spring, which was bent manually and is poorly 
characterized. The stiffness of this wave spring and flexures has not been determined, neither 
theoretically nor experimentally, and perhaps more importantly, the linear regimes of these flexible 
components have not been established. Per Equation 7, as the mass (and thrust) of the thruster 
increases, the steady-state deflection also increases, which makes the knowledge of the linear 
regime of the flexible components all the more necessary. 

3. Electronic subsystems. The thrust stand is an electro-mechanical device that houses 4 primary 
electronic components: the displacement sensor, the active damping control, the calibration spool 
motor, and the inclination motor. The displacement sensor is a Linear Variable Differential 
Transducer (LVDT) that is position at the end of a ~0.5 m long rod attached to the upper plate of 
the inverted pendulum. Since the (linear) thermal expansion is proportional to the length of the 
material, temperature variations inside the copper shroud can cause expansions and contractions of 
the LVDT arms which are magnified due to its length. Since the Owens thrust stands operates in 
displacement mode, artificial deflections are interpreted as artificial thrust, and the reported thrust 
measurements can be erroneously high or low due to thermal expansions/contractions of the LVDT 
arm. The calibration spool motor also deserves some attention. User stories claim that the 
deployment and retraction of the calibration weights cause unnecessary vibrations from the stepper 
motor, which cause the calibration weights to swing erratically. Also, the inclination motor 
warrants consideration. Unlike the calibration pulley motor, the inclination control system is a lead 
screw assembly driven by a conventional DC motor. User stories claim that the control authority 
of the DC motor is sometimes not sufficient to raise/lower the lead screw or tilt the thrust stand. 

Many of the previously described design weak points are amplified by hotter and heavier thrusters with 
higher thrust levels. Given the test campaigns in the queue for the Owens facility, a re-design of the thrust 
stand is warranted. It is clear that many of these design choices can have an effect on thrust measurement 
accuracy, but how shall this be quantified? An important aspect of assessing the quality of a thrust stand 
design is the quantification of its accuracy via an uncertainty analysis. In an effort to standardize practices 
for conducting uncertainty analysis, the next section constitutes a tutorial on the subject.  
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2. Uncertainty Analysis 
The performance of thrust stands for electric propulsion are described by several metrics, as depicted in 
Figure 4.  

 
Figure 4. Performance metrics of thrust stands for electric propulsion testing. 

While all are important considerations in the design and analysis of thrust stands, in this section we will 
focus on quantifying the accuracy of the Owens thrust stand, where the accuracy is expressed in terms of 
uncertainty in the thrust measurements. The goals of this section are to (1) provide a tutorial on uncertainty 
analysis for electric propulsion thrust stands in general and (2) apply the uncertainty analysis framework to 
the displacement-mode inverted pendulum thrust stand of the Owens chamber. Section 2 is organized as 
follows. We will first consider the classification and treatment of common experimental uncertainties, then 
their propagation and combination. We will then examine the important role of the calibration process and 
see how it simplifies the uncertainty analysis. Finally, we will apply this framework to an EP thrust stand. 

2.1. Classification 
In the context of experimental measurements, the words “uncertainty” and “error” are often used 
interchangeably, but there is a useful distinction between the two. Uncertainty refers to a range of possible 
values within which one believes the true value of the measurement is likely to reside. Consider the 
following statement: the measured thrust is 700 ± 10 mN. This translates to “the best estimate of the true 
(but unknown) thrust is 700 mN, but it is likely to be as high as 710 or as low as 690.” Note that uncertainties 
are usually symmetric about our best estimate of the true value, but they need not be—i.e., the positive 
uncertainty can be different from the negative uncertainty. A measurement error refers to the difference 
between the best estimate of the true value and the true value itself. Notice that, by definition, an error 
requires knowledge of the true value of the underlying measurement. A notional depiction of the distinction 
between errors and uncertainties is provided in Figure 5.  
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Figure 5. Depiction of experimental uncertainties and errors. 

Uncertainties can be classified into two groups: random and systematic. Random uncertainties are normally 
distributed with a mean of zero, whereas systematic uncertainties tend to bias the measurement in one 
direction or the other. The familiar depiction of random and systematic uncertainties is shown in the left 
panel of Figure 6; to highlight the difficulty in handling systematic uncertainties, a more realistic version is 
shown on the right. 

 
Figure 6. Random and systematic uncertainties in theory and in practice, depicted via bullet holes at target 
practice.  

In the vast majority of experimental measurements, including the measurement of thrust in EP testing, one 
does not know the true value of the underlying measurement. The treatment of random uncertainties is thus 
fundamentally different from that of systematic uncertainties. Random uncertainties are usually 
quantified via statistical methods and lend themselves to minimization through repeated sampling 
and averaging; however, for the reasons just discussed, systematic uncertainties are harder to 
identify and evaluate, so their treatment is not as straightforward, as will be discussed next. 

How one handles measurement infidelity is determined by its classification. The following classification 
chart shown in Figure 7 will be useful for categorizing such sources of measurement infidelity. 
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Figure 7. Classification tree of potential sources of measurement infidelity.  

When presented with a potential source of measurement infidelity, first determine whether it is random or 
systematic. If it is random, then it can only be random uncertainty—there is no “random error” in this 
context. On the other hand, if it is systematic, can it be quantified? If so, then it is a systematic error. If it 
cannot be quantified, it should be rendered as a systematic uncertainty. As an illustration of how to use the 
classification tree, consider the following potential sources of measurement infidelity with a DM-IP thrust 
stand. 

• Mechanical vibrations. Mechanical vibrations manifest as noise in the thrust stand response. 
Noise is a type of random uncertainty. It can be mitigated with sufficient averaging and estimated 
using the standard deviation of the mean (discussed further in the next sub-section). 

• Thrust vector misalignment. If the thrust vector were misaligned, the thrust stand would only 
measure the projection of the thrust vector parallel to the line of motion. A misaligned thrust vector 
would cause consistent and systematic underestimation. Since we do not know the exact 
misalignment of the thrust vector, it cannot be quantified, only estimated, and will be rendered as 
a systematic uncertainty. Its treatment will be discussed in the next sub-section. 

• A calibration weight was left on the thruster pulley during thruster operation. The erroneous 
thrust measurement would be systematically high, but since we know the weight of the calibration 
loads, the measurement infidelity can be quantified; thus, it is a systematic error. It should be 
corrected at the source (e.g., remove the weight) or corrected for in the reporting of the best estimate 
(e.g., subtract the weight of the calibration load from the best estimate of the reported thrust). 

2.2. Treatment  
Following the classification of sources of measurement infidelity, the next question is how to treat them.  

2.2.1. Random uncertainties 
Consider first random uncertainties. Random uncertainties are treated using statistical methods, so a brief 
review of relevant statistics is provided next. 
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Suppose we take a sample of 𝑁 measurements of some quantity 𝑥. The best estimate 𝑥g of the true value is 
the mean of the sample, �̅�, computed as follows. 

 

𝑥g = �̅� ≡
1
𝑁
i 𝑥,

-

,./
 Equation 15 

 

The standard deviation of the sample4 is determined as follows. 

 

𝑠+ ≡ _∑ (𝑥, − �̅�)-
,./

*

𝑁 − 1
 Equation 16 

 

Notice the 𝑁 − 1 in the denominator of the standard deviation of the sample. Why not just 𝑁? Any sum of 
squares has associated with it a certain number of degrees of freedom 𝜈. This is the number of independent 
pieces of information involving the number used to compile the sum of squares.  

 

𝑑𝑜𝑓 = 𝜈 ≡ #	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 − #	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 Equation 17 
 

How many independent observations go in the calculation of the standard deviation of the sample? Well, 
we have 𝑁 observations: 𝑥/, 𝑥*, … , 𝑥-. But we also know one parameter: �̅�. If we know �̅� and were only 
given 𝑁 − 1  observations, then we can immediately solve for the last observation. It is no longer 
independent. So, we have 𝑁 − 1 degrees of freedom (or 𝑁 − 1 independent observations) since one of the 
observations can be computed used the sample mean �̅� and the other 𝑁 − 1 observations. 

Now consider Equation 16 more carefully. Each measurement 𝑥,  has some residual (𝑥, − �̅�) associated 
with it. We cannot simply take the average of the residuals, as many would cancel out, so we take the sum 
of the squares of the residuals to estimate the average deviation of all the measurements from the mean of 
our sample. However, and this is crucial, our answer for the best estimate 𝒙o = 𝒙p, represents a judicious 
combination of all 𝑵 measurements in our sample, and we have every right to believe that it will be 
more reliable than any one of the measurements taken alone in estimating the true value of the 
underlying measurement. If we repeat this procedure many times: (1) collecting 𝑁 measurements of the 
same quantity 𝑥 and (2) computing the sample mean �̅�, we will have a distribution of sample means. 
Statistical theory, more specifically, the central limit theorem, tells us that this distribution is centered on 
the true value of the underlying measurement 𝑥0 and has a standard deviation, called the standard deviation 
of the mean, computed as follows.  

 

𝜎+̅ ≡
𝑠+
√𝑁

 Equation 18 

 

 
4 The reader will no doubt find other names for the statistical metrics discussed in this paper. We have chosen 
terminology that is most common and that accurately describes the underlying metric. 
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A depiction of the distinction between the standard deviation of the sample 𝑠+ and the standard deviation 
of the mean 𝜎+̅ is provided in Figure 8. 

 
Figure 8. Distinction between the standard deviation of the sample 𝒔𝒙 (left panel) and the standard deviation of 
the mean 𝝈𝒙" (right panel). 

Notice how on the left panel of Figure 8 the distribution is centered on the mean of the 𝑗02 sample �̅�3. Now 
if we take many samples and compute many sample means, we will get a distribution of sample means, and 
that is depicted on the right panel of Figure 8. Observe that the distribution of the sample means is centered 
on the true value of the underlying measurement 𝑥0. 

Of course, the true value of the underlying measurement 𝑥0 is unknown, so when we compute a sample 
mean �̅�, we have no idea how close it is to 𝑥0. However, we can use the standard deviation of the mean 𝜎+̅ 
to construct confidence intervals about our sample mean �̅�, which will tell us the probability that the true 
value 𝑥0 lies within our intervals, and is computed as follows. 

 

𝐶𝐼 = �̅� ± 𝑡4,6𝜎+̅ Equation 19 
 

Here, 𝑡 is a value that depends on the number of degrees of freedom 𝜈 in the sample and desired confidence 
level (1 − 𝛼)% and must be looked up in a Two-Tailed Student t-Distribution table.5 Notice from Equation 
18 that the standard deviation of the mean decreases with the square root of 𝑁. So, the more observations 
we include in our sample, the tighter our confidence intervals will be. 

The 95% CIs for two hypothetical samples are shown below. Notice that for one sample, the confidence 
interval does not contain the true value of the underlying measurement and for the other, it does. 

 
5 The t-distribution is like Z-distribution (that is, the standard normal distribution) but shorter and fatter. As the number 
of degrees of freedom increases, the t-distribution approaches the Z-distribution (for 𝑁 > 30 they are essentially the 
same). 
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Figure 9. Two hypothetical confidence intervals for two sample means. 

The 95% confidence interval translates to following: “Upon repeated sampling, 95% of the intervals 
constructed in this way will contain the true but unknown value of the underlying measurement.” In other 
words, if we were to take 100 samples of 𝑁  measurements and compute 100 sample means and 100 
confidence intervals, roughly 95 of them would contain the true value of the underlying measurement. And 
the best part (or the worst part) is that we will never know. We can express this as a random uncertainty 
𝑈78)9 in the following form. 

 

𝑥0 = �̅� ± 𝑈78)9 

𝑤𝑖𝑡ℎ 

𝑈78)9 = 𝑡4,6𝜎+̅ 

 

Random uncertainties should only be ascertained in this statistical way. A single data point on its own does 
not lend itself to random uncertainty analysis. 

2.2.2. Systematic uncertainties 
Now consider the pernicious treatment of systematic uncertainties. There is no simple theory for how to 
handle systematic errors. The fundamental problem is to decide how to estimate the systematic uncertainty 
and then how to combine it with random uncertainty. On estimating systematic uncertainty, recall the 
Uncertainty Classification Chart in Figure 7. If we have identified a source of systematic measurement 
infidelity and we can quantify it, then we have identified a systematic error and it should be corrected either 
at the source or in the reporting of the best estimate. However, if it cannot be quantified and is thus a 
systematic uncertainty, how should we handle it? Experimental convention is to model the systematic 
uncertainty as a type of random uncertainty, i.e., normally distributed with a mean of zero. For example, 
most (commercial) experimental instrumentation come with a datasheet that reports the accuracy of the 
instrument, e.g., the thermocouple is accurate to ± 5 °C. What this is telling us is that the probe is likely 
biased, but the extent of the biased cannot be resolved beyond ± 5 °C, i.e., the systematic error is uncertain 
à systematic uncertainty. Recall that systematic errors have been quantified, e.g., the thermocouple has a 
bias of 3 °C. This is a luxurious scenario. If quantified in this way, systematic errors should be corrected 
immediately, either at the source (e.g., repeating the measurement with an un-biased thermocouple) or in 
the reporting of the best estimate (e.g., subtracting 3 °C from the reported temperature). In contrast, 
systematic uncertainties are just that: they are uncertain. The instrumentation may be biased, or it may not 
be. In this scenario, we assume that the systematic uncertainty is normally distributed (much like random 
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uncertainties). We address how to propagate and combine systematic and random uncertainties in the next 
section. 

2.3. Propagation and combination 
The most common approach to the propagation of uncertainties is as follows. Suppose that we have a 
function 𝜑 of several variables 𝜔/, … , 𝜔)—i.e., 𝜑 = 𝜑(𝜔/, … , 𝜔)). Each variable 𝜔, has associated with 
it a total uncertainty 𝑈0:0,;,, which itself may be comprised of systematic and random uncertainties. If the 
uncertainties in 𝜔/, … , 𝜔)  are, and this is crucial, independent and normally distributed, then the total 
uncertainty in 𝜑 is as follows. 

 

𝑈0:0,< = z{𝑈<,;!|
* +⋯+ {𝑈<,;"|

* Equation 20 

 

Equation 20 says that the total uncertainty in 𝜑 is the Sum in Quadrature (SIQ) of the partial uncertainties 
in 𝜑 due to the uncertainties in 𝜔/, … , 𝜔). The partial uncertainty in 𝜑 due to the uncertainty in 𝜔, is given 
as follows. 

 

𝑈<,;# =
𝜕𝜑
𝜕𝜔,

�
;=!,…,;="

𝑈0:0,;# Equation 21 

 

Equation 21 says that the partial uncertainty in 𝜑 due to the total uncertainty in 𝜔, is the partial derivative 
𝜑 with respect to 𝜔/ (this is a measure of the influence that 𝜔/ has on 𝜑) multiplied by the total uncertainty 
in 𝜔/ . Note that the derivative term is evaluated at the best estimates of 𝜔/, … , 𝜔) . Finally, the total 
uncertainty in 𝜔,, as mentioned previously, may be comprised of both systematic and random uncertainties. 
If the systematic uncertainty 𝑈(?( and random uncertainty 𝑈78)9 are independent and normally distributed, 
then the total uncertainty in the variable 𝜔, is as follows. 

 

𝑈0:0,;# = z{𝑈(?(,;#|
* + {𝑈78)9,;#|

* Equation 22 

 

An illustration of this nested application of uncertainty propagation and combination is shown below. 

 
Figure 10. Propagation and combination of experimental uncertainties. 
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In general, a set of independent and normally distributed uncertainties can be combined in this Summation 
in Quadrature (SIQ) manner6. However, if the set of uncertainties cannot be deemed both independent and 
normally distributed then the uncertainties cannot be combined via a SIQ; they can only be combined via 
their direct sum. This is because the SIQ accounts for the possibility that some of the high measurement 
uncertainty would cancel with some of the low measurement uncertainty. For example, suppose we wish 
to compute the uncertainty in 𝜑 = 𝜔/ +𝜔*  where 𝜔/ = 5 ± 2  and 𝜔* = 5 ± 3 . If there were no 
uncertainty, then the value of 𝜑 would always be 10, but what is the worst-case scenario? Suppose both 𝜔/ 
and 𝜔* were measured at their lower uncertainty bounds, i.e., 𝜔/ = 3 and 𝜔* = 2, in this case, 𝜑 = 5; or 
suppose they were measured at their upper uncertainty bounds, i.e., 𝜔/ = 7 and 𝜔* = 8, in this case, 𝜑 =
15. In either worst-case scenario, the uncertainty in 𝜑 is the direct sum of the uncertainties in 𝜔/ and 𝜔*.7 

 

𝑈0:0,< = 𝑈0:0,;! + 𝑈0:0,;$ = 2 + 3 = 5 

 

These worst-case scenarios are not very likely however. If the uncertainties in 𝜔/ and 𝜔* are independent 
(i.e., the value of one uncertainty does not affect the value of the other) and normally distributed (i.e., they 
have a normal distribution with a mean of zero), then there is a good chance that the uncertainty in both 
measurements will “cancel out.” The SIQ method of combining uncertainties accounts for this possibility 
and the resulting SIQ uncertainty is always smaller than the direct sum. 

 

𝑈0:0,< = z{𝑈0:0,;!|
* + {𝑈0:0,;$|

* 

= �2* + 3* ≅ 3.6	 

 

In general, the direct sum can be considered an upper-bound on a combination of uncertainties. Expressed 
mathematically, 

 

𝑈0:0,< = z{𝑈<,;!|
* +⋯+ {𝑈<,;"|

* 

𝑤𝑖𝑡ℎ 

𝑈0:0,< ≤ 𝑈<,;! +⋯+𝑈<,;$.  

 

To summarize, one should use the SIQ method to combine sets of uncertainty only when the sets can be 
deemed independent and are normally distributed. When a source of uncertainty does not meet these 
criteria, it should be added to the total uncertainty via a direct sum. 

 
6 This is also called Root Sum of Squares (RSS), but we will avoid this acronym so as not to confuse with Residual 
Sum of Squares, discussed shortly.  
7 Note that the partial derivatives of 𝐹 with respect to 𝜔# and 𝜔$ are both equal to one. 
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2.4. Thrust stand calibration 
Next, we will examine the important role of the calibration process and the effect it has on the uncertainty 
analysis. Theoretically, one could compute the effective angular stiffness (Equation 6) of a thrust stand by 
carefully evaluating all the flexible components and by knowing the pendulum mass and length. This 
process is difficult however because the laboratory testing of an electric thruster often requires complex 
interfaces between the thrust stand and the test facility (e.g., the propellant/coolant lines and electronic 
harnessing), which contribute parasitic stiffness to the system. It is much more practical to perform an end-
to-end calibration of the entire thrust stand assembly. The primary purpose of the thrust stand calibration 
is to learn the relationship between the deflection (or sensor output) and the applied force. This relation is 
most commonly learned via linear regression, and as we will see, there are aspects of linear regression that 
greatly simplify the uncertainty analysis. 

DM-IP thrust stands are calibrated by assuming the steady-state linear deflection of the thrust stand is 
proportional to the applied force, e.g., 𝐹 = 𝑘+𝑥(( . From Equation 14, we see that the constant of 
proportionality 𝑘+ is the inverse of the linear sensitivity 𝑆+. 

 

𝑆+ ≡
𝑥((
𝐹
				⇒ 				𝐹 =

1
𝑆+
𝑥((				 

𝑎𝑛𝑑	𝑘𝑛𝑜𝑤𝑖𝑛𝑔… 

𝐹 = 𝑘+𝑥(( 

⇒ 

𝑘+ =
1
𝑆+

 

 

Thrust stand calibration involves applying known forces 𝐹 parallel to the line of motion and monitoring the 
deflection sensor output	𝑥 of the thrust stand. The application of known forces is commonly performed with 
a pully-weight system. The loading profile typically assumes one of the following forms: the applied 
calibration weights are increased incrementally (Figure 11a), or the weights are sequentially loaded and 
unloaded (Figure 11b). The latter has the advantage of correcting for (to some extent) the effect of zero 
drift, to be discussed shortly. Both methods yield the calibration curve shown in Figure 11c. Note that 
displacement sensors typically output a voltage that is converted to a displacement via the sensor sensitivity 
G (𝑚/𝑉). Also note that the profiles are often mirrored, i.e., the loads are stepped up then stepped down, 
which provides twice as many data points and is recommended practice—this is not shown in the figure to 
avoid excessive clutter. 
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Figure 11. Typical calibration profiles of electric propulsion pendulum thrust stands. Not shown is the fact that 
the loading profiles are often mirrored, i.e., the loads are stepped up then stepped down, which provides twice as many 
data points and is recommended practice 

 

2.4.1. Response variable and predictor variable 
There is the delicate subject of which variable to use as the response variable and which to use as the 
predictor. There are two methods.  

1. The first method puts the applied force on the y-axis (response) and the displacement on the x-axis 
(predictor)—i.e., it regresses 𝐹	𝑜𝑛	𝑥 as follows. 
 

𝐹� = 𝛽�AB + 𝛽�/B𝑥 Equation 23 
 

At first glance, this method seems appropriate since our end goal is to predict the force given a 
value of displacement. However, least-squares regression assumes (or requires) that the predictor 
is fixed while the response is random. Equation 23 is the inverse of this statement since the predictor 
is the random variable (the displacement) while the response is the fixed variable (the known 
calibration loads)8.  This method thus is referred to as inverse regression.  

2. The second method has the displacement as the response and the applied force as the predictor—
i.e., it regresses 𝑥	𝑜𝑛	𝐹, as follows. 

 
8 There will usually be much more relative uncertainty in the displacement sensor output than the known loads due to, 
for example, random uncertainties from mechanical vibrations or electrical noise, as well as systematic uncertainties 
from thermal effects or distortions in the thrust stand. 
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𝑥g = 𝛽�A + 𝛽�/𝐹 Equation 24 
 

We mentioned that least-squares regression assumes (or requires) that the predictor is fixed while the 
response is random. Is the predictor truly fixed? We cannot know the calibration weights with absolute 
certainty, but we can ensure that their relative uncertainty is much smaller than the relative uncertainty in 
the displacement sensor, and thus satisfy this requirement. As discussed in Section 2.2.1, this can be 
accomplished by repeated sampling of the calibration weights. Once we have the model trained, we need 
to invert Equation 24 to predict the force using the deflection as shown below. Hence, this method is known 
as inverse prediction. 

 

𝐹 = −
𝛽�A
𝛽�/
+
1
𝛽�/
𝑥g Equation 25 

  

Which should we use? The former method (inverse regression), while not supported by theory, has been 
found to work well in practice for highly linear datasets. The latter method (inverse prediction) is slightly 
unintuitive but has the advantage of having theoretical support. Being supported by statistical theory will 
allow us to leverage other aspects of linear regression, such as confidence and prediction intervals in 
quantifying the thrust stand random uncertainty (to be discussed in the next section). For these reasons, it 
is recommended that the predictor be the known applied force while the response variable be the 
change in displacement sensor output (inverse prediction). 

It is tempting to believe that the “slope” terms in Equation 23 and Equation 25 are inverses of each other, 
and that the best-fit line will be the same regardless of which method is used, but that is usually not the 
case.9 Consider the process of estimating the coefficients by the recommended inverse prediction method 
(Equation 24). If using least-squares regression, the best estimates of the coefficients are those that 
minimize the Residual Sum of Squares (RSS), with the residuals 𝑒, being defined as the difference between 
the actual response 𝑥, and the predicted response 𝑥g,. 

 

𝑒, ≡ 𝑥, − 𝑥g, Equation 26 
  

𝑅𝑆𝑆 ≡i(𝑒,)* =	
)

,./

i(𝑥, − 𝑥g,)* =	
)

,./

i{𝑥, − 𝛽�A − 𝛽�/𝐹,|
*

)

,./

 Equation 27 

 

The RSS is a quadradic function with two unknowns and admits a global minimum, which can be solved 
for the following closed-form expressions of the estimated coefficients. 

 

𝛽�A = �̅� − 𝛽�/𝐹� Equation 28 
  

 
9 Due to the manner in which we measure thrust, the intercept coefficient is of little importance as it cancels out in the 
computation of thrust. 
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𝛽�/ =
∑ (𝐹, − 𝐹�)(𝑥, − �̅�))
,./
∑ (𝐹, − 𝐹�)*)
,./

=
𝑐𝑜𝑣� (𝐹, 𝑥)
𝑣𝑎𝑟� (𝐹)

 Equation 29 

 

If we were to swap the regressor and predictor and perform inverse regression (Equation 23), we would get 
the following closed-form expressions for the estimated coefficients. 

 

𝛽�AB = �̅� − 𝛽�/B𝐹� 
 

Equation 30 
 

𝛽�/B =
∑ (𝐹, − 𝐹�)(𝑥, − �̅�))
,./
∑ (𝑥, − �̅�)*)
,./

=
𝑐𝑜𝑣� (𝐹, 𝑥)
𝑣𝑎𝑟� (𝑥)

 Equation 31 

 

Observe that inverse of 𝛽�/B  is not the same as 𝛽�/ unless 𝑣𝑎𝑟� (𝐹) = 𝑣𝑎𝑟� (𝑥), which is usually not the case. 

2.4.2. Confidence and prediction intervals for uncertainty analysis 
If we proceed with the theory-supported inverse prediction method and regress 𝑥	𝑜𝑛	𝐹, we can leverage 
certain aspects of linear regression to conduct our uncertainty analysis—namely, confidence and prediction 
intervals, as will be discussed next. 

To measure the quality of the regression model, common practice is the use the Coefficient of Determination 
(R2) which can be computed with the Total Sum of Squares (TSS), Explained Sum of Squares (ExSS), and 
Residual Sum of Squares (RSS), as defined in below and depicted in Figure 12. 

 

𝑇𝑆𝑆 ≡i(𝑥, − �̅�)*
)

,./

 Equation 32 

  

𝐸+𝑆𝑆 ≡i(𝑥g − �̅�)*
)

,./

 Equation 33 

  

𝑅𝑆𝑆 ≡i(𝑥, − 𝑥g)*
)

,./

 Equation 34 
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Figure 12. Depiction of (a) Total Sum of Squares, (b) Explained Sum of Squares, (c) and Residual Sum of 
Squares. 

The TSS is a measure of the total variability in the response variable. The ExSS is the amount of variability 
explained by the regression model. The RSS is the residual variability left unexplained by the regression 
model. A fundamental equation in regression analysis says that the ExSS plus the RSS is always the TSS. 

 

𝑇𝑆𝑆 = 𝐸+𝑆𝑆 + 𝑅𝑆𝑆 Equation 35 
 

The Coefficient of Determination 𝑅* is defined as the ratio of the Explained Sum of Squares to the Total 
Sum of Squares and is bounded by 0-1. 

 

𝑅* ≡
𝐸+𝑆𝑆
𝑇𝑆𝑆

= 1 −
𝑅𝑆𝑆
𝑇𝑆𝑆

 Equation 36 

 

Furthermore, the response is defined as the mean (expected) value of the response, given a very large 
number of predictors of the same value. Thus, when we predict an 𝑥g, (the points on the blue line in Figure 
12), what we are really predicting is the average deflection for many calibration-loads of the same weight 
𝐹,. 

 

𝑥g, = 𝐸[𝑥|𝐹,] Equation 37 
 

The distribution of 𝑥  for each value of 𝐹,  is assumed to be equivalent (homoscedasticity), and this 
distribution has a variance called the common variance of the residuals. The population common variance 
of the residuals 𝜎CDD*  is unknown but can be estimated with the sampling common variance of the residuals 
𝑠CDD* , the latter of which is the RSS normalized by its number of degrees of freedom—hence, 𝑠CDD*  is also 
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called the Mean Residual Sum of Squares (MRSS).10 Recall that any sum of squares has associated with it 
a certain number of degrees of freedom. From Equation 17, recall that the number of degrees of freedom is 
the number of observations 𝑛 minus the number of estimated parameters. For a simple linear model, there 
are two estimated parameters, 𝛽�A and 𝛽�/, so the number of degrees of freedom is 𝑛 − 2. 

 

𝜎CDD* ≈ 𝑠CDD* = 𝑀𝑅𝑆𝑆 =
𝑅𝑆𝑆
𝑑𝑜𝑓

=
∑ (𝑥, − 𝑥g)*)
,./
𝑛 − 2

 Equation 38 

 

The square root of the sample common variance of the residuals 𝑠CDD is called Residual Standard Error,11 
but it is best thought of as the standard deviation of the residuals. For example, compare Equation 39 below 
with Equation 16. The only difference is that the data 𝑥, in Equation 39 is compared to the model 𝑥g and not 
the sample mean of the data �̅�, and that the sum of squares in Equation 39 has 2 degrees of freedom (two 
unknowns, 𝛽�A	𝑎𝑛𝑑	𝛽�/), while the sum of squares in Equation 16 has only 1. 

 

𝑠CDD = _∑ (𝑥, − 𝑥g)*)
,./
𝑛 − 2

 Equation 39 

 

The concepts of homoscedasticity and the standard deviation of the residuals are depicted in Figure 13. 

 
Figure 13. Depiction of homoscedasticity and the standard deviation of the residuals. 

The standard deviation of the residuals in Equation 39 plays a key role in calculating the confidence 
intervals about both the estimated coefficients and the predicted response.  

 
10 The sampling common variance goes by many names; it is also called the variance of the residuals, the Mean 
Standard Error or the Mean Squared Error (both MSE).  
11 Other names include the Root Mean Squared Error (RMSE) or the Standard Error of the Estimates (SEE). 
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Upon repeated calibrations, we will obtain slightly different estimates of coefficients 𝛽�A and 𝛽�/. Much like 
the distribution of sampling means, after many calibrations, we would obtain a sampling distribution of 
each coefficient. Statistical theory tells us that these distributions are normally distributed, and their 
standard deviations, called the standard error of the estimated coefficients, can be computed from (by taking 
the square root of) the following equations. 

 

𝑆𝐸*{𝛽�/| = 𝜎CDD* �
1

∑ (𝐹, − 𝐹�)*)
,./

� Equation 40 

  

𝑆𝐸*{𝛽�A| = 𝜎CDD* �
1
𝑛
+

𝐹�*

∑ (𝐹, − 𝐹�)*)
,./

� Equation 41 

 

In the above equations, the population common variance of the residuals 𝜎CDD*  is unknown, and is thus 
estimated with the sample common variance of the residuals 𝑠CDD*  (A.K.A. the MRSS), in which case, 
Equation 40 and Equation 41 would be estimates of the standard errors of the estimated coefficients. Note 
that in the EP community, it is common practice to perform many repeated calibrations. If this is the case, 
and all the estimated coefficients are recorded, then the standard error of the estimated coefficients need 
not be estimated—it can be computed directly by taking the standard deviation of the mean of the estimated 
coefficients using Equation 18. 

Once we have the regression model, it is straightforward to apply Equation 24 for prediction purposes. 
Given a value of the predictor 𝐹A, we can predict the value of the response 𝑥g"%. There are two sorts of 
uncertainty associated with this prediction; their sources follow. 

1. The coefficient estimates 𝛽�A and 𝛽�/ are estimates for 𝛽A and 𝛽/—that is, the best-fit line 𝑥g is only 
an estimate for the true population line 𝑥0. We use confidence intervals (CI) to determine how 
much our best-fit line 𝑥g will vary from true (but unknown) population line 𝑥0. 

2. Even if we knew the true population line (i.e., the true values of the coefficients 𝛽A and  𝛽/), the 
response value cannot be predicted perfectly because of random uncertainty. We use prediction 
intervals (PI) to determine how much our predicted response 𝑥g, will vary from actual data 𝑥,. 

Confidence intervals are computed using the standard error of the regression model 𝑆𝐸(𝑥g), which can be 
computed from (by taking the square root of) the following expression.  

 

𝑆𝐸*(𝑥g) = 𝜎CDD* �
1
𝑛
+

(𝐹A − 𝐹�)*

∑ (𝐹, − 𝐹�)*)
,./

� Equation 42 

  
⇒  
  

𝐶𝐼 = 𝑥g ± 𝑡4,6𝑆𝐸(𝑥g)  
 

As discussed previously, 𝑡 is a value determined from a t-distribution table using the degrees of freedom 𝜈 
and confidence level 1 − 𝛼. Suppose we compute a 95% confidence interval about the regression model. 
The 95% CI should be interpreted as follows, “95% of the confidence intervals constructed in this way will 
contain the true but unknown population line.” 
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Prediction intervals are computed using the standard error of the predicted response 𝑆𝐸(𝑥g,), which can be 
computed from (by taking the square root of) the following expression. 

 

𝑆𝐸*(𝑥g,) = 𝜎CDD* �1 +
1
𝑛
+

(𝐹A − 𝐹�)*

∑ (𝐹, − 𝐹�)*)
,./

� Equation 43 

  
⇒  

  
𝑃𝐼 = 𝑥g, ± 𝑡4,6𝑆𝐸(𝑥g,)  

 

Suppose we compute a 95% prediction interval. The 95% PI should be interpreted as follows, “95% of the 
prediction intervals constructed in this way will contain the true but unknown value of the response 
variable.” 

In both  Equation 42 and Equation 43, 𝜎CDD*  is estimated with 𝑠CDD* . A visual comparison of the confidence 
and prediction intervals is presented in Figure 14.  

 

 
Figure 14. Comparison between (a) confidence intervals of the regression model and (b) prediction intervals of 
the predicted response.  

Consider the left panel of Figure 14. The curved dashed lines represent the confidence intervals. They are 
bounds that apply to the regression line itself which is just an estimate of the true but unknown population 
line. What the confidence interval says is that if we took 100 samples and made 100 calibration curves and 
computed 100 confidence intervals in this way, roughly 95 of them would contain the true population line. 
Now consider the right panel of Figure 14. The dashed lines here represent the prediction intervals. What 
the prediction interval says is that if we took a single value of the applied force 𝐹,  and predicted the 
displacement and computed the prediction interval, there is a 95% probability that this interval contains the 
true but unknown displacement 𝑥, for that calibration load 𝐹,. In other words, the prediction interval is used 
to quantify the uncertainty surrounding the predicted displacement for single value of the applied load. 
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Furthermore, there are three important features which can be gleaned from Equation 42 and Equation 43 as 
depicted in Figure 14. First, there is a subtle flaring in these intervals with the smaller intervals being near 
the mean of the data. This is due to the (𝐹A − 𝐹�)* terms in both Equation 42 and Equation 43. In other 
words, the models are more accurate near the mean of the data. This should be taken into consideration 
when selecting the calibration weight sets. Second, the prediction intervals are always larger than 
confidence intervals. This is due to the addition of the “1” in Equation 43. This makes sense since the 
prediction intervals is the uncertainty surrounding a prediction from a single value of the predictor, whereas 
the confidence interval is the uncertainty surrounding the average (expected) deflection of many predictors 
of the same value (see Equation 37). Third, note that both the confidence and prediction intervals are sets 
of vertical error bars on the predicted response. This is a key point that will be revisited shortly. 

We can use the prediction intervals to quantify the random uncertainty in our predictions. Consider the 
recommended 𝑥	𝑜𝑛	𝐹 regression model given by Equation 24. We can use the model two ways. We could 
use the model as trained, but what we really need is to invert the model and perform inverse prediction, as 
discussed previously, and predict the applied force given a value of the displacement. The uncertainty in 
the former as trained method can be characterized by Equation 44 (which is the same as Equation 43, except 
now it is the standard error of the predicted displacement from 𝐹A); whereas the uncertainty in the inverted 
prediction method can be characterized by Equation 45. In the latter case, to minimize random uncertainty, 
the value taken for the deflection is often the average of many measurements, say 𝑁, and is denoted �̅�A. 

 

𝑆𝐸*{𝑥g"%| = 𝜎CDD* �1 +
1
𝑛
+

(𝐹A − 𝐹�)*

∑ (𝐹, − 𝐹�)*)
,./

� Equation 44 

  
⇒  
  

𝑃𝐼(𝑎𝑠	𝑡𝑟𝑎𝑖𝑛𝑒𝑑) = 𝑥g, ± 𝑡4,6𝑆𝐸{𝑥g"%|  
 

 

𝑆𝐸*{𝐹�+̅%| =
𝜎CDD*

𝛽�/*
�
1
𝑁
+
1
𝑛
+

(�̅�A − �̅�)*

𝛽�/* ∑ (𝐹, − 𝐹�)*)
,./

� Equation 45 

  
⇒  
  

𝑃𝐼(𝑖𝑛𝑣𝑒𝑟𝑠𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) = 𝐹�+̅% ± 𝑡4,6𝑆𝐸{𝐹�+̅%| 
 

 

These two prediction methods and their associated prediction intervals are depicted in Figure 15. 
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Figure 15. Prediction intervals (a) using the regression model as trained vs. (b) using the inverted prediction 
method. 

One important item to consider is the fact that whichever method we chose, the variable that is used as the 
predictor is assumed known with absolute certainty. For example, in Figure 15a, when the regression model 
is used as trained, the predictor 𝐹A is assumed known with no uncertainty and the displacement 𝑥g"% incurs 
the uncertainty. In contrast, in Figure 15b where the regression model is inverted, the predictor, in this case 
the displacement �̅�A , is assumed known with no uncertainty and the estimated force 𝐹�+̅%  incurs the 
uncertainty. In either method, there is some uncertainty that is ignored. This requirement, although never 
perfectly met, can be adequately satisfied by ensuring sufficiently small random uncertainty in the predictor, 
whatever it may be, via sufficient sampling as discussed in Section 2.2. 

The inverse prediction interval given by Equation 45 (and depicted in Figure 15b) is at the heart of 
conducting an uncertainty analysis with a thrust stand calibration curve via the inverse prediction method. 
There are several important features that may be gleaned from this expression. 

1. The standard error of the prediction interval decreases as the estimated slope coefficient 𝛽�/ 
increases. We will see shortly that the inverse of the estimated coefficient (1/𝛽�/) is in fact the linear 
sensitivity of the thrust stand 𝑆+. The point here is that the prediction interval decreases as the linear 
sensitivity increases, so this is an added advantage of designing higher sensitivity thrust stands. 

2. The standard error of the predicted response 𝑆𝐸*{𝐹�+̅%| includes the standard error of the estimated 
slope coefficient 𝑆𝐸*{𝛽�/|. To see this, simply distribute the (square of the) standard deviation of 
the residuals 𝜎CDD*  in Equation 45 and compare the result to Equation 40. 

𝑆𝐸*{𝐹�+̅%| =
𝜎CDD*

𝛽�/*
�
1
𝑁
+
1
𝑛
+

(�̅�A − �̅�)*

𝛽�/*∑ (𝐹, − 𝐹�)*)
,./

�	

=
1
𝛽�/*
�
𝜎CDD*

𝑁
+
𝜎CDD*

𝑛
+

𝜎CDD*

∑ (𝐹, − 𝐹�)*)
,./

⋅
(�̅�A − �̅�)*

𝛽�/*
�	
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=
1
𝛽�/*
�
𝜎CDD*

𝑁
+
𝜎CDD*

𝑛
+ 𝑆𝐸*{𝛽�/| ⋅

(�̅�A − �̅�)*

𝛽�/*
� 

In other words, the prediction intervals constructed using Equation 45 includes a term the accounts 
for the random uncertainty in the slope coefficient. Recall that standard error of the estimated 
coefficient need not be estimated—it can be computed directly by taking the standard deviation of 
the mean of the estimated coefficients using Equation 18. 

3. The prediction interval is directly proportional to standard deviation of the residuals 𝜎CDD* , which 
is computed by Equation 38. Recall that square root of the common variance is called the residual 
standard error 𝑠CDD , given by Equation 39, and is a measure of the random variability in the 
response variable, which is assumed constant for all values of the predictor. Thus, the prediction 
interval also includes a term that accounts for the random uncertainty in the displacement response. 

4. The prediction interval decreases as both the number of calibration points 𝑛 increases and as the 
number of data points taken to compute the mean of the displacement (�̅�A) 𝑁 increases.  

5. The prediction interval decreases as �̅�A → �̅� . The measurements will be more accurate if the 
displacement is near the middle of the range experienced under the range of calibration loads. 

In short, the prediction interval given by the inverse prediction method (Equation 45) is used when the 
regression model is trained 𝑥	𝑜𝑛	𝐹, then inverted to predict force given a value of the deflection. The 
standard error of the predicted response includes the random uncertainty in the estimated slope coefficient, 
the random uncertainty in the displacement variable, the number of calibration points, and the number of 
data point used to compute the mean displacement �̅�A. We strongly recommend the inverse prediction 
method coupled with the inverse prediction intervals to be used to perform the random uncertainty 
analysis for a thrust measurement. 

With the aforementioned techniques for conducting uncertainty analysis using the tools of linear regression, 
we can now apply this framework to electric propulsion thrust stands. To keep the discussion grounded, we 
will focus on inverted pendulum thrust stands. First, we will review best practices for taking a thrust 
measurement, then we will examine the total random uncertainty in a thrust stand measurement. Finally, 
we will tackle estimating systematic uncertainties. 

2.5. Thrust measurements 
The recommended practice for taking a thrust measurement is as follows.  

1. Start the thruster and allow it to reach thermal equilibrium and steady-state operation. 
2. Obtain an adequate number of measurements of the thrust stand displacement to calculate a mean 

value �̅�E- =
/
-
∑ 𝑥E-,,-
,./  with a sufficiently small standard deviation of the mean. 

3. Turn off thrust power and flow rate and obtain measurements of the thrust stand displacement to 
characterize the zero (no load) value �̅�E"" =

/
-
∑ 𝑥E"",,-
,./ . 

The difference between the thruster ON and OFF states will be considered the thrust response for that 
operating point. This method has the advantage of correcting for (to some extent) long-term drifts in the 
thrust stand zero. 

 

𝐹# = 𝐹�E- − 𝐹�E"" Equation 46 
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Thus, our thrust measurement 𝐹#  is the difference between two regression predictions, 𝐹�E-  and 𝐹�E"" , 
where 𝐹�E- and 𝐹�E"", as per Equation 25, are given by the following. 

 

𝐹�E- =
�̅�E-
𝛽�/

−
𝛽�A
𝛽�/

 Equation 47 

  

𝐹�E"" =
�̅�E""
𝛽�/

−
𝛽�A
𝛽�/

 Equation 48 

 

Recall our discussion in Section 2.3 regarding the combination and propagation of uncertainties. Here we 
have a function 𝐹#  of two variables, 𝐹�E-  and 𝐹�E"" . Our objective in the next two subsections is to 
determine the random and systematic uncertainties in both 𝐹�E- and 𝐹�E"". Give those figures, we will then 
combine the random and systematic uncertainties in 𝐹�E-  to obtain a total uncertainty in 𝐹�E- , then we 
combine the random and systematic uncertainties in 𝐹�E"" to obtain a total uncertainty in 𝐹�E"". 

2.6. Random uncertainty 
As discussed, the most direct method for conducting random uncertainty analysis is to use the inverse 
prediction intervals for both 𝐹�E- and 𝐹�E"", which can be computed from Equation 45. In other words, when 
reporting 𝐹�E- and 𝐹�E"", we can compute the 95% prediction intervals using Equation 45 and write the 
following. 

 

𝐹E- = 𝐹�E- ± 𝑡4,6𝑆𝐸(𝐹�E-) Equation 49 
  

𝐹E"" = 𝐹�E"" ± 𝑡4,6𝑆𝐸(𝐹�E"") Equation 50 
 

The terms that follow after the ± in Equation 49 and Equation 50 are the random uncertainties in the 
predicted responses. 

 

𝑈78)9,"F&' = 𝑡4,6𝑆𝐸(𝐹�E-) Equation 51 
  

𝑈78)9,"F&(( = 𝑡4,6𝑆𝐸(𝐹�E"") Equation 52 
 

2.7. Systematic uncertainty 
The process for estimating the systematic uncertainty in a thrust stand measurement is not as straightforward 
as random uncertainties and is more an exercise in engineering judgement. Recall from Section 2.1. that 
systematic errors which cannot be quantified are called systematic uncertainties, and they are usually 
modeled like random uncertainties, i.e., with normal distributions. Sources of systematic errors include 
thermal drift, mechanical friction, external electromagnetic forces, non-uniformities in vacuum facilities, 
thermal expansion, and drift in plumbing/cabling. However, and this is crucial, many systematic errors are 
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nulled via the calibration process. Because the calibration process is a mapping of the thrust stand 
response to a known applied force, whatever systematic imperfections that alter the response from 
what it would have been (were those imperfections not present) are of little significance so long as 
those systematic imperfections are present during both thrust stand calibration (when the “mapping” 
is statistically learned) and thruster operation (when the “mapping” is applied). This feature of the 
calibration process reduces the sources of systematic errors to only those that differ between thruster 
operation and calibration, with thermal effects being the dominant culprit. Simply put, the thermal 
environment of the thrust stand may be different between calibration and thruster operation due to the heat 
generated by the thruster. For this reason, modern thrust stands employ thermal control via water cooling 
systems. These systems are used to maintain consistent temperatures between calibration and thruster 
operation; however, temperature variation can still exist, and it is worth examining how thermal effects can 
alter a thrust measurement. 

2.7.1. Thermal effects 
Thermal effects can creep into the thrust stand in many ways, but generally, they cause either gain shifts, 
that is, changes to the stiffness of the thrust stand—or zero shifts, that is, changes to the thrust stand “zero” 
state. For example, springs generally become less stiff with increasing temperature, so for the same applied 
force, the spring would deflect more if it were hotter (gain shift). Similarly, a spring can undergo thermal 
expansion (or contraction) under temperature variation, which could change the neutral length of the spring 
and alter the zero-position of the thrust stand (zero shift). This could happen, for example, with the 
“waterfall” power lines. There is no standard method for estimating the gain and zero shifts of the thrust 
stand due to thermal effects. We provide three options. 

1. Experimental examination: one could simply perform a series of calibrations under varying degrees 
of thermal load and examine the relationship (if any) between the thermal load and calibration 
constants. This could involve the creation of a mass and thermal simulator of the thruster of interest. 

2. Thermo-mechanical simulation: using a high-fidelity CAD model of the thrust stand, software 
exists that can predict thermal expansion and contraction under various thermal maps. However, a 
challenge here is that this method requires an accurate thermal mapping of the thrust stand and all 
its components. 

3. Analytical study: one could use simple beam theory and heat transfer analysis to estimate the 
variation in the calibration constants. Similar to the former, this method requires an accurate 
thermal mapping of the thrust stand and all its components. 

Recall that any systematic error that is identified should be corrected at the source or in the reporting of the 
final measurement. Otherwise, one should report that the systematic bias cannot be resolved beyond some 
threshold and treat it as a systematic uncertainty. Once the systematic uncertainty has been identified, 
common practice is to combine it with the random uncertainty via the Summation in Quadrature (SIQ) 
method. For example, a possible gain shift should be treated as a systematic uncertainty in 𝐹�E- (𝑈(?(,"F&') 
and should be combined with the corresponding random uncertainty in 𝐹�E- (𝑈78)9,"F&') via the SIQ method 
to obtain the total uncertainty in 𝐹�E-  (𝑈0:0,"F&'). Likewise, a possible zero shift should be treated as a 
systematic uncertainty in 𝐹�E""  (𝑈(?(,"F&(( ) and should be combined with the corresponding random 
uncertainty in 𝐹�E"" (𝑈78)9,"F&(() via the SIQ method to obtain the total uncertainty in 𝐹�E"" (𝑈0:0,"F&((). 
This procedure is shown below. 
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𝑈0:0,"F&' = z{𝑈(?(,"F&'|
* + {𝑈78)9,"F&'|

* Equation 53 

  

𝑈0:0,"F&(( = z{𝑈(?(,"F&((|
* + {𝑈78)9,"F&((|

* Equation 54 

 

2.7.2. Thrust stand inclination 
A relatively large source of systematic uncertainty that is not nulled via the calibration due to the uncertainty 
in the inclination of the thrust stand. For this reason, modern thrust stands employ active inclination control 
(as depicted in Figure 3). Were the entire thrust stand tilted by some inclination 𝑖 about the inclination pivot, 
then a component of the weight of the thruster would exist in the line of motion causing a deflection in the 
thrust stand not generated by thrust, as shown below. We refer to this erroneous force as the “lean force.” 

 
Figure 16. Notional inclination error due to a component of the weight force in the direction of thrust stand 
deflection. 

Notice that the lean force can be positive (artificially increases the measured thrust) or negative (artificially 
decreases the measured thrust) depending on the direction of the inclination. If we knew 𝑖, then we could 
correct our measurement as follows. 

 

𝐹� = 𝐹 + 𝐹GH8) 

⇒ 

𝐹 = 𝐹� − 𝐹GH8) = 𝐹� −𝑚𝑔 sin 𝑖 cos 𝑖 

 

But since we do not know 𝑖, the uncertainty in our measurement can be estimated as the difference between 
the true thrust and the estimated thrust. 

 

𝑈",, = 𝐹 − 𝐹� = 𝐹� −𝑚𝑔 sin 𝑖 cos 𝑖 − 𝐹� = 	−𝑚𝑔 sin 𝑖 cos 𝑖 
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Here we have an expression for the uncertainty in the force as a function of the inclination. Note the negative 
sign. If 𝑖 were positive (or leaning the right as depicted in Figure 16), then the measured thrust 𝐹� would 
larger than the true thrust generated by the thruster 𝐹, since the measured thrust would include the lean 
force, and the error would come out negative. If 𝑖 were negative (leaning to the left), then the measured 
thrust would be less than the true thrust, and the error would come out positive, since sin−𝑖 = −sin 𝑖. Also 
note that the uncertainty in 𝐹 due to 𝑖 is symmetric (normally distributed with a mean of zero), meaning 
that if quantified in this way it can be combined with other systematic uncertainties in 𝐹 via the SIQ method. 

2.7.3. Misalignment of thrust vector 
Another source of systematic uncertainty that is not nulled via the calibration process is the potential 
misalignment of the thrust vector due to improper mounting. (A similar analysis can be conducted for a 
misalignment of the calibration pulley mechanism, but we will only discuss the thrust vector here.) If the 
thrust vector is misaligned, then thrust stand will only measure the projection of the thrust vector onto the 
line of motion of the thrust stand. Suppose we cannot resolve alignment of the thruster beyond some 
imaginary cone with a half-angle of 𝛼 degrees. That is, the thruster vector is within ±𝛼 of the line of 
motion, as shown below. 

 
Figure 17. Notional misalignment of thrust vector. 

How shall we threat this? First, observe that no matter the orientation of the misaligned thrust vector (e.g., 
whether above, below, or to the side of the line of motion), the projection onto the line of motion will always 
be less than the true thrust. The force causing the horizontal deflection is reduced to �⃗� cos(𝛼). Since our 
displacement sensor is only sensitive to displacements in the x-direction, our estimated thrust 𝐹� measures 
the projection of the true thrust on the x-axis. If we knew 𝛼, then the we could correct our measurement as 
follows. 

 

𝐹� = 𝐹 cos(𝛼) 

⇒ 

𝐹 =
𝐹�

cos(𝛼)
 

 

But since we do not know 𝛼, the uncertainty in our measurement can be estimated as the difference between 
the true thrust and the estimated thrust. 



33 
 

 

𝑈",6 ≅ 𝐹 − 𝐹� =
𝐹�

cos(𝛼)
− 𝐹� = 𝐹�(sec(𝛼) − 1) 

 

Here we have an expression for the uncertainty in the force as a function of the misalignment angle 𝛼. 
Notice that sec(𝛼) = sec(−𝛼) ≥ 0, meaning that the uncertainty is always positive. This is a rare scenario 
in which the uncertainty is asymmetric. Recall from Section 2.3, that we can only use the SIQ (Summation 
in Quadrature) method for symmetric uncertainties. If we were to account for this uncertainty, we 
recommend adding to the total uncertainty directly, which would result in an asymmetric uncertainty (much 
like that depicted in Figure 5). 

 

𝐹 = 𝐹� ± 𝑈0:0," + 𝑈",6 

2.7.4. Other sources 
Note that there is no need to include the systematic uncertainty of the displacement sensor in the uncertainty 
analysis. If the sensor were biased, so long as the bias is present during both thruster ON and thruster OFF 
conditions, then this systematic error will cancel when computing the difference between 𝐹�E- and 𝐹�E""—
this is another advantage of taking the difference between the displacement sensor signals as the thrust 
stand response. 

2.8. Total uncertainty 
Finally, once the total uncertainties in 𝐹�E-  and 𝐹�E""  have been computed, we can compute the total 
uncertainty in our thrust measurement. Recall from Equation 46 that the thrust measurement is the 
difference between 𝐹�E- and 𝐹�E"": 𝐹# = 𝐹�E- − 𝐹�E"". Here we have a function 𝐹# of two variables. From 
Figure 10, we know that the total uncertainty in 𝐹# is computed by combining the partial uncertainties in 
𝐹#  due to 𝐹�E-  and 𝐹�E""  via the SIQ method. The complete strategy for conducting a thrust stand 
uncertainty analysis is shown below. 

 

𝑈0:0,") = z{𝑈"),"F&'|
* + {𝑈"),"F&((|

* 

𝑤𝑖𝑡ℎ 

𝑈"),"F&' =
𝜕𝐹#
𝜕𝐹�E-

𝑈0:0,"F&' = 𝑈0:0,"F&' 

𝑈"),"F&(( =
𝜕𝐹#
𝜕𝐹�E""

𝑈0:0,"F&(( = 𝑈0:0,"F&(( 

𝑤𝑖𝑡ℎ 

𝑈0:0,"F&' = z{𝑈(?(,"F&'|
* + {𝑈78)9,"F&'|

* 

𝑈0:0,"F&(( = z{𝑈(?(,"F&((|
* + {𝑈78)9,"F&((|

* 
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𝑤𝑖𝑡ℎ 

𝑈(?(,"F&' = 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔	𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡 

𝑈(?(,"F&(( = 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔	𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡 

𝑎𝑛𝑑 

𝑈78)9,"F&' = 𝑡4,6𝑆𝐸(�̅�E- → 𝐹�E-) 

𝑈78)9,"F&(( = 𝑡4,6𝑆𝐸(�̅�E"" → 𝐹�E"") 

𝑤ℎ𝑒𝑟𝑒 

𝑆𝐸(�̅�E- → 𝐹�E-) =
𝜎CDD*

𝛽�/*
�
1
𝑁
+
1
𝑛
+

(�̅�E- − �̅�)*

𝛽�/*∑ (𝐹, − 𝐹�)*)
,./

� 

𝑆𝐸(�̅�E"" → 𝐹�E"") =
𝜎CDD*

𝛽�/*
�
1
𝑁
+
1
𝑛
+

(�̅�E"" − �̅�)*

𝛽�/*∑ (𝐹, − 𝐹�)*)
,./

� 

𝑤ℎ𝑒𝑟𝑒	 

𝑛 = 𝑁𝑜. 𝑜𝑓	𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡𝑠 

𝑁 = 𝑁𝑜. 𝑜𝑓	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠	𝑢𝑠𝑒𝑑	𝑡𝑜	𝑐𝑜𝑚𝑝𝑢𝑡𝑒	�̅�E-	𝑜𝑟	�̅�E"" 

3. Conceptual Design 
In this section, we will examine the different configurations of pendulum thrust stands (inverted, hanging, 
and torsional) as well as two common modes of operation (null-mode, and displacement-mode). Then, upon 
selection of the thrust stand configuration and mode of operation, we will provide a series of design 
recommendations. 

3.1. Brief configuration trade study 
Recall from Section 1.2 that the three forms of pendulum thrust stands are all governed by the same 
rotational spring-mass-damper equation of motion with the difference being the effect that gravity has on 
the effective angular spring constant, as shown below.  

 

𝐼�̈� + 𝑐�̇� + 𝑘𝜃 = 𝐹𝐿 

𝑤𝑖𝑡ℎ 

𝑘 = M	
𝑘! 𝑓𝑜𝑟	𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
𝑘! +𝑚𝑔𝐿 𝑓𝑜𝑟	ℎ𝑎𝑛𝑔𝑖𝑛𝑔	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠
𝑘! −𝑚𝑔𝐿 𝑓𝑜𝑟	𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠

 

 

Recall further that we derived an expression for the linear sensitivity of the thrust stand as follows. 
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𝑆+ ≡
𝑥((
𝐹
=
𝐿*

𝑘
	

	

Substituting the expressions for the effective angular spring constant in the linear sensitivity equation, we 
can express the linear sensitivity of the various pendulum mechanisms as follows. 

 

𝑆+ =

⎩
⎪⎪
⎨

⎪⎪
⎧

	

𝐿*

𝑘!
𝑓𝑜𝑟	𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠

𝐿*

𝑘! +𝑚𝑔𝐿
𝑓𝑜𝑟	ℎ𝑎𝑛𝑔𝑖𝑛𝑔	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠

𝐿*

𝑘! −𝑚𝑔𝐿
𝑓𝑜𝑟	𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚𝑠

 Equation 55 

 

Equation 55 is an important expression for the preliminary “sizing” of EP thrust stands. The true angular 
spring constant, 𝑘!, can be a challenge to ascertain analytically due to complex interfaces between the 
stationary and moving components of the thrust stand, such as the propellant lines, cabling, etc.; but these 
parasitic spring forces are usually much smaller than the angular spring stiffness caused by the primary 
springs. Thus, for preliminary sizing, we can assume that the parasitic spring forces are negligible and 
model 𝑘! analytically. 

For example, the Owens inverted pendulum thrust stand currently uses a linear wave (or M-shaped) spring 
for the primary spring that pushes back with a spring force 𝐹( against the defection of the thrust stand 𝜃. 
Under such angular deflection, the linear defection is 𝑥 = 𝐿𝑠𝑖𝑛(𝜃) ≅ 𝐿𝜃, in which case the torque from the 
linear spring is as follows. 

 

𝜏( = (𝑠𝑝𝑟𝑖𝑛𝑔	𝑓𝑜𝑟𝑐𝑒)(𝑚𝑜𝑚𝑒𝑛𝑡	𝑎𝑟𝑚) 
= 𝐹(𝐿 
= 𝑘(𝑥𝐿 
= 𝑘(𝐿*𝜃 

 

Therefore, the angular spring constant can be computed from the linear spring constant as follows. 

 

𝑘! = 𝑘(𝐿* Equation 56 
 

Note that if multiple, say 𝑁(, springs were connected “in parallel,” their spring constants would combine 
via a direct sum, and the total angular spring constant would be as follows. 

 

𝑘! = 𝑁(𝑘(𝐿* Equation 57 
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More modern thrust stands employ flexure pivots, which are purely rotational springs and offer several 
advantages over planer leaf springs (durability, higher buckling load, etc.), and since they operate “in 
parallel,” their spring constant also add. The total angular spring constant for 𝑁I flexure pivots would be as 
follows. 

 

𝑘! = 𝑁I𝑘I Equation 58 
 

Note that one could combine linear springs and flexure pivots, in which case, the angular spring constant 
would simply be the sum of 𝑁(𝑘(𝐿* +𝑁I𝑘I.  

With these expressions for the angular spring constant, we can perform preliminary sizing of the new thrust 
stand to determine which configuration would best suit our needs. The scope of this trade study will be 
limited to the three types of pendulum mechanisms and two modes of operation shown below. 

 
Figure 18. Thrust stand preliminary design configuration trade space. 

 

3.1.1. Preliminary design constraints 
The Owens Chamber will be the workhorse for the next generation of high-power Hall thrusters, with 
thruster masses approaching 100 kg. Let us take the mass of the thrust stand (hardware and thruster) to be 
100 kg (𝑚 = 100	𝑘𝑔). Furthermore, let us strive for a linear sensitivity of one micron of deflection for 
every millinewton of thrust (𝑆+ = 1𝜇𝑚 𝑚𝑁⁄ = 1 × 10JK	𝑚/𝑁). Finally, let us strive for a relatively 
compact size, i.e., pendulum length less than half a meter (𝐿 < 0.5	𝑚) to fit comfortably inside the existing 
vacuum chamber. 

3.1.2. Torsional pendulum 
The torsional pendulum (TP) is appealing because the angular stiffness and dynamics of the thrust stand 
are independent of gravity, which makes for a more straightforward design process. TPs can thus be 
designed for very high sensitivities, which, as we have discussed, is advantageous for multiple reasons. TPs 
are sometimes employed as swinging gates or counterbalanced mechanisms. With the swinging gate 
mechanism, the 100 kg load would put an uncomfortably large moment on the hinges of the swinging gate. 
We could combat this large moment via a counterbalance such that the net moment is zero; however, in 
doing so, we are increasing the standing weight of the thrust stand, which is already considerable given the 
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100 kg class thruster. Theoretically, the standing weight could be reduced with longer moment arms, but 
this would increase the pendulum length constraint for our new design. For these reasons, torsional 
pendulums are generally not suitable for very large thrusters, such as the ones considered for the Owens 
Chamber. 

3.1.3. Hanging pendulum 
The hanging pendulum (HP) is appealing because the system is inherently stable. HPs are usually either 
single or parallel linkage systems. Parallel linkage systems are advantageous as they maintain a horizontal 
thruster vector (perpendicular to the force of gravity). With a single linkage, the thrust vector would tilt 
with the deflection of the thrust stand. Recall from Equation 55 that the sensitivity of HPs is inversely 
proportional to the sum of the angular spring constant and gravitational torque constant, 𝑆+ =
𝐿* (𝑘! +𝑚𝑔𝐿)⁄ . If we consider the best-case scenario that 𝑘! = 0 (free-swinging HP), and we want a 
thrust stand of mass 𝑚 = 100	𝑘𝑔 to have a linear sensitivity of 1	𝜇𝑚/𝑚𝑁, then the length of the pendulum 
is roughly estimated as follows. 

 

𝑆+ =
𝐿*

𝑚𝑔𝐿
=

𝐿
𝑚𝑔

 

⇒ 

𝐿 = 𝑚𝑔𝑆+ = (100	𝑘𝑔) �10
𝑚
𝑠*
  �1 × 10JK

𝑚
𝑁
  ≅ 1	𝑚	 

 

This length is larger than our initial design constraint of half a meter, and unfortunately, this length only 
increases as we add additional springs (linear or rotational). In the absence of springs, this free-swinging 
hanging pendulum would also suffer from relatively large settling times, which is not desirable for most 
electric propulsion testing. In short, although the HP is inherently stable, a reasonably sized pendulum 
would suffer from lower sensitivities, which is not suitable for our purposes. 

3.1.4. Inverted pendulum 
In terms of sensitivity, inverted pendulums (IP) are the most attractive option. Recall from Equation 55 that 
the linear sensitivity of IPs is inversely proportional to the difference 𝑘! −𝑚𝑔𝐿. Notice that as 𝑚𝑔𝐿 → 𝑘! ,
𝑆+ → ∞, which means that we have several design variables available to tune the sensitivity of the thrust 
stand. For example, suppose we use a combination of linear springs and flexure pivots such that 𝑘! =
𝑁(𝑘(𝐿* +𝑁I𝑘I, then the linear sensitivity would be as follows. 

 

𝑆+ =
𝐿*

𝑁(𝑘(𝐿* +𝑁I𝑘I −𝑚𝑔𝐿
 

 

If 𝑆+, 𝑚, and 𝐿 were fixed, then we could still carefully select the number and stiffnesses of the linear 
springs as well as the number and stiffnesses of the flexure pivots to maintain our desired linear sensitivity. 
An inverted pendulum allows for the maximum control of the thrust stand sensitivity, as there are several 
design variables that we can control to tune the sensitivity of the thrust stand. Thus, the inverted pendulum 
is the best solution for our purposes as it can be designed both compact and with high sensitivity.  
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Note that no one pendulum design is inherently more or less accurate than the other. The proverbial devil 
is in the details. Recall that the total random uncertainty in a thrust measurement is governed by the standard 
error of the predicted response given by Equation 45 and repeated below for convenience. 

 

𝑆𝐸*{𝐹�+̅%| =
𝜎CDD*

𝛽�/*
�
1
𝑁
+
1
𝑛
+

(�̅�A − �̅�)*

𝛽�/* ∑ (𝐹, − 𝐹�)*)
,./

� 

 

Further recall that the estimated slope coefficient (for the recommended 𝑥	𝑜𝑛	𝐹 calibration) is functionally 
the linear sensitivity (𝛽�/ = 𝑆+) and that the total random uncertainty of a thrust measurement is inversely 
proportional to the sensitivity of the thrust stand. Provided that all thrust stand mechanisms can achieve the 
same sensitivity, there is no reason to expect that any one pendulum type would exhibit a greater random 
uncertainty than any other, all else equal. Systematic uncertainties on the other hand, which, if present, 
typically manifest in the form of thermal effects, have a more pronounced effect on thrust stand accuracy 
the greater the characteristic length of the pendulum. Long, cantilevered structures, for example, are more 
susceptible to non-negligible thermal expansion and contraction with temperature variations. While the 
thrust stand may be thermally controlled, temperature variation can still exist, which may be different 
between thruster calibration and operation. Desirable TPs and HPs would require longer pendulum 
mechanisms, given the thruster mass under consideration. For these reasons, the inverted pendulum is our 
best option. 

3.1.5. Displacement-mode vs null-mode 
Finally, we must decide whether to implement a displacement mode or a null mode thrust stand. As a 
reminder, displacement mode thrust stands infer the thrust from the displacement of the thrust stand under 
some applied force. The calibration process, 𝑥	𝑜𝑛	𝐹, is the statistical learning of this relationship via a best-
fit line. However, recall from Section 1.2 (see Equation 13) that the linear relationship between 𝑥 and 𝐹 
was derived under the assumption of small angles. State-of-the-art inverted pendulum thrust stands maintain 
very small deflections (typically less than 1 degree), so we can assume small angles without significant 
error, although some systematic error is incurred under this assumption (£0.13% for θ ≤ 5°).  

The small angle approximation can be eliminated via implementing a null mode thrust stand. As a reminder, 
null mode pendulums use a restoring force, or null force, to counter the deflection of the thrust stand, 
increasing the null force until the deflection is nulled, i.e., equivalent to the zero-position value when the 
thruster was OFF. Once the thrust stand is back to the zero-position (potential hysteresis notwithstanding), 
static equilibrium dictates that the null force is equivalent to the applied force. An additional advantage of 
null mode thrust stands is that (at steady state) the thruster remains at the same position regardless of thrust, 
which could be useful for near-field plasma diagnostics. For these reasons, a null-mode inverted pendulum 
is the recommended configuration. 

Note that the calibration process for a null-mode thrust stand regresses the null force on the applied force 
(𝐹-	𝑜𝑛	𝐹), i.e., with the null force 𝐹- on the “y-axis” as the response variable, and the applied force 𝐹 on 
the “x-axis” as the covariate. The analytics for conducting random uncertainty analysis of null mode 
pendulums is exactly the same as for displacement mode presented in Section 2, with displacement 𝑥 
replaced by null force 𝐹-. 
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3.2. Preliminary design recommendations 
There are two central themes that the new design should focus on: thermal control and inclination control—
as these are likely the dominant systematic uncertainties. What follows is a short list of design 
recommendations, followed by a brief explanation, that may be implemented in the new thrust stand design. 

1. A wider base. As mentioned in Section 1.3, the Owens parallel linkage thrust stand is 
uncomfortably narrow for large thrusters. With the variability of thruster and cabling harness 
masses, the center of mass of the thrust stand will shift for different thrusters. Were the center of 
mass to shift outside the parallel linkages, the thrust stand would simply topple over. A wider base 
would afford lateral freedom in the location of the center of mass. 

2. Use of flexure pivots wherever frictionless rotation is desired. As mentioned in Section 1.3, the 
Owens thrust stand currently employs thin metal strips to limit the motion of the thrust stand to one 
direction. These thin metal strips are a mechanical weak point for thrust stands as their high aspect 
ratio leads to a relatively low buckling point. Flexure pivots are a relatively modern technology that 
improve on the planar flexures by incorporating multiple thin metal strips inside a rotating 
assembly. Flexure pivots thus provide the same frictionless rotation while supporting large 
compressive loads and are thus recommended as an alternative to planar metal strips. 

3. Multiple linear extension springs with fine-tune adjustability. Recall that the Owens currently uses 
a linear compressive wave spring as the primary spring. A single compressive spring offers little 
freedom to fine tune the stiffness of the system for different thruster masses as well as the zero 
position of the thrust stand. Multiple linear, and opposing, extension springs would afford this 
adjustability. Furthermore, if the extension springs are made with tension adjustability, the thrust 
stand could be “zeroed” or vertically balanced more accurately. 

4. Optical sensors for displacement sensing. Optical sensors generally have higher accuracies and 
would thus reduce the number of data points required in the computation of �̅�E-  and �̅�E""  to 
achieve a sufficiently low random uncertainty. 

5. Flexure pivot on inclination pivot. Flexure pivots come in various sizes and the larger ones can 
withstand the shear force caused by 100-kg thrust stands. A pair of these can serve as a replacement 
pivoting mechanism to the weakened threaded rod design currently in place. 

6. Inclination stepper motor and encoder. The inclination of the thruster can cause a significant 
systematic uncertainty in the thrust measurement due to the 𝑚𝑔 sin(𝜃) component of gravity as 
discussed. With such heavy thrust stands, care should be taken to ensure that the motorized 
assembly used for inclination control has enough control authority to maintain the upright position 
without hysteresis. One solution is the use of a lead-screw design driven by a stepper motor and 
encoder system. 

7. Inclination pivot downstream of center of mass and inclination motor upstream (or vice versa). 
Related to the above, the inclination pivot point and inclination control system should be on either 
side of the thrust stand center of mass. Currently, the pivot point is more-or-less directly beneath 
the center of mass, which is inherently unstable, but reduces the load on the inclination control. 
Shifting the inclination pivot point and inclination control system to either side of the center of 
mass would demand more control authority from the inclination control motors, but would be 
stable. Also, if the thrust stand were to tilt, we could design and plan for the direction it would tilt. 
If the inclination control can be accommodated this extra load, the stable setup is preferred. 

8. Displacement lever. A notable idea is to amplify the displacement of the thrust stand using a 
mechanical lever. By amplifying the change in displacement, the minute displacements caused by 
thermal variation would be a lesser portion of the overall displacement, thus improving the 
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resolution. Put another way, it would bring the displacement caused by the thruster “out of the 
noise” of the displacements caused by thermal variation. 

A notional depiction of a modernized thrust stand that incorporates these design recommendations is shown 
below. 

 
Figure 19. Notional schematic of a modernized thrust stand. The calibration pulley mechanism is not shown to 
avoid excessive clutter. 

4. Conclusions 
We have tried to disseminate the many insights on thrust stands for electric propulsion; the most notable 
are the mechanics for conducting uncertainty analysis of these devices, and selection of thrust stand 
configuration. In this work, we first provided an overview of thrust stands for electric propulsion testing 
and presented the governing equations as well as the linearized sizing equations for their conceptual design. 
Second, we reviewed best practices for conducting uncertainty analysis in general and provided a review 
of the statistical mechanisms behind them. When calibrating the thrust stand, we recommend using inverse 
prediction method and train 𝑥	𝑜𝑛	𝐹, then to quantify the random uncertainty, we recommend using the 
(inverted) prediction intervals. Finally, some back-of-the-envelope calculations were shown to determine 
which configuration of thrust stand would be most suitable for future JPL Hall thruster programs. We 
recommend a parallel-linkage inverted pendulum, and we made several design recommendations that 
should, at a minimum, be thought-provoking. 


