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Abstract

This work contributes to our understanding of broadcasting self-disclosures on social media—

specifically surrounding the highly stigmatized topic of suicidality. In particular, we assess (1)

whether there are any psycholinguistic patterns post-disclosure, (2) if they reflect therapeutic

benefits, and (3) if we can preempt those who would benefit from such disclosures. We ana-

lyze public Twitter data of (N=1060) users who have disclosed some form of suicidality. We

use Linguistic Inquiry and Word Count (LIWC) along with timeseries clustering to identify

temporal-psycholinguistic patterns post-disclosure. We identify two clusters that are differenti-

ated by their use of filler words. The majority group (73% of users) appears to experience

therapeutic benefit in the form of significantly lower usage of filler words (i.e., higher coherence)

than the other group post-disclosure. We then develop a range of machine learning and deep

learning classifiers that utilize only pre-disclosure information to predict whether a user would

benefit from such disclosures. We achieve modest but positive results, with our best model

achieving an AUC score of 0.66 over a baseline of 0.50 and a macro F1 score of 0.64 over a base-

line of 0.50—indicating that there is some predictive information in the language pre-disclosure

that can preempt whether someone would receive therapeutic benefit from broadcasting self-

disclosures. We discuss the implications of our findings for designing new intervention strategies

that can improve support provisions for those who disclose suicidality on social media.
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1 Introduction

Suicidality continues to represent a complex and significant public health concern in the United

States. Suicide rates have steadily increased over the last two decades—approximately 2% each

year from 2000-2010 and 3-4% from 2010-2020— except for 2020, which saw a slight decrease which

many attribute to the COVID-19 pandemic. In 2021, an estimated 12.3 million American adults

seriously thought about suicide, 3.5 million planned a suicide attempt, 1.7 million attempted suicide,

and 48,183 were successful [CDC 2021]. Provisional data for the year 2022 show that 49,449 people

died by suicide—pending confirmation, this would be the highest figure ever recorded. Sadly, these

figures do not capture the physical or psychological pain that led these individuals to take their own

lives.

Researchers and practitioners combating suicide do so on several fronts. With the widespread

adoption of social media and the advances made in the fields of machine and deep learning, one

rich venue for research is the interaction between suicidality, or more broadly mental well-being,

and social media. On the one hand, social media data can be used as a lens through which to

understand one’s mental state [26]. For example, psychological studies have shown that our state

of mind can manifest itself in the linguistic features we use to communicate [13, 22], and several

important studies have taken this perspective [10, 14, 16, 30]. On the other hand, it has been well-

established that social media can affect our mental well-being [4, 21, 23, 31]. While these studies

primarily focus on the adversarial effects of social media on mental health, there is also evidence

that it can be a source of emotional and social support [1–3]—including for those suffering from

suicidality [15].

Outside the context of social media, it is understood that self-disclosure, a process of “making the

self known to others” [12], is an important therapeutic element in the achievement of physical and

mental well-being [19], as it is a widely adopted mechanism for coping. More recently, research has

found evidence that these therapeutic benefits of mental health disclosures may also extend to social

media context [15, 17]. Important to our study, prior work has established that broadcasting self-

disclosures of highly stigmatized mental disorders (e.g., schizophrenia) shows evidence of therapeutic

benefit. In [17], Ernala et al. examined 146 clinician-verified disclosures of schizophrenia on Twitter

and found evidence of therapeutic benefit across several metrics including improved readability

2



and coherence in language, future orientation, lower self-preoccupation, and reduced discussion of

symptoms and stigma perceptions. Our work fits within this context and contributes toward our

understanding of broadcasting self-disclosures on social media—specifically surrounding the highly

stigmatized topic of suicide.

In this paper, we assess whether any discernible psycholinguistic patterns differentiate those who

self-disclose their suicidality on social media and whether these patterns reflect therapeutic benefits.

Furthermore, we assess whether we can preemptively identify those who would benefit from such

disclosures. More specifically, we address the following questions: (a) Are there any psycholinguistic

patterns that differentiate those who self-disclose their suicidality on social media? (b) If so, do they

show evidence of therapeutic benefits to such disclosures? (c) Is it possible to anticipate who and

who would not receive such a benefit?

To address these questions, we examine publicly shared Twitter posts from users who have

disclosed some form of suicidality. We use the widely adopted and vetted linguistic lexicon Linguistic

Inquiry and Word Count (LIWC) to extract temporal psycholinguistic signals post-disclosure, we

conduct a timeseries clustering analysis to identify distinct response behaviors of those who publicly

disclose their suicidality. We find that a majority of users maintain lower usage of filler words,

which may be interpreted as higher coherence, in their language post disclosure—providing further

evidence of the therapeutic benefits to self-disclosures of suicidality. Additionally, we developed

classifiers that utilize only pre-disclosure language to preempt whether a user would benefit from

such disclosures. These classifiers achieve modest but positive results indicating that pre-disclosure

language alone contains some predictive signals that can preempt whether someone would benefit

from disclosing suicidality on social media—however, we note that further study is warranted to

determine other possible predictors of therapeutic benefit.

These findings have important implications for designing new intervention strategies that can

improve support provisions for those who disclose suicidality on social media. For example, our

findings suggest that it may be possible to preemptively identify those who would benefit from

disclosing their suicidality on social media and provide them with additional opportunities for richer

forms of expression. Similarly, those who are predicted not to benefit from such disclosures could

be provided with alternative intervention strategies and/or support provisions.

The remainder of this article is as follows. In section 2, we describe our data collection process
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and the methods used to address our research questions. In section 3, we present our results. In

section 4, we discuss the implications of our findings and their limitations. Finally, in section 5, we

conclude with a summary of our findings and directions for future study.

2 Data and Methods

2.1 Data

We utilized public Twitter data via the Twitter API v2 for this research1. We take great care to

protect the privacy of the users; we do not present direct quotes from any data, or any identifying

information.

Our data collection proceeded in two phases. First, we identified a set of suicidal tweets via a

case-insensitive query for tweets that contained some form of suicidality. Building on prior literature,

we collected tweets for 38 suicide-relevant keywords [6, 9]; the complete list is reproduced in Table

1. Observe that these keywords capture a wide range of suicidality. Some phrases can capture

those explicitly considering harming themselves (e.g., stab, shoot, hang myself), others capture the

desire for death (e.g., sleep forever, never wake up, asleep and never wake), or the lack of desire to

live (e.g., don’t want to exist, don’t want to go on, don’t want to wake up, not want to be alive).

These keywords even capture more subtle forms of suicidality, like the miscalculation of perceived

burdensomeness [34] (e.g., better off dead, my death would). Also, note that these keywords were

originally used to query tweets from the 2015-2017 time frame, thus we adopt the same time frame

for our data collection process, as expressions of suicidality may have changed.

From this initial query of suicidal tweets, we manually filtered benign or overtly non-suicidal

tweets. We decided to include suicide “jokes” in our dataset (e.g., brb killing myself). From a

psychological perspective, humor plays an interesting role in suicidal disclosures. By framing one’s

suicide self-disclosure as a joke, the discloser gets to express themselves without (or with less risk

of) social stigma or rejection [X]. These phrases were thus included in the analysis (see Table 1).

We then collected the timelines of each user six months before and after the date of disclosure. We

removed users with multiple suicide disclosures. This means that for those users in our dataset

whose disclosures resemble “jokes,” these jokes only occurred once in a year—perhaps adding more
1The data collection for this project was carried out before Twitter’s acquisition by X Inc.
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significance to their occurrence. We also removed those users with excessively few (not conducive

to statistical analyses) and frequent (likely bots) tweets, and those whose primary language was

not English. This resulted in a final dataset of 1.4M tweets from N=1060 users. Table 1 tabulates

the keywords used to collect tweets along with examples of included/excluded self-disclosure tweets.

Table 2 provides summary statistics for our dataset. Figure 1 depicts the top 10 keywords with the

highest frequencies within the set of disclosure tweets. Note that some disclosure tweets contained

multiple keywords.

Suicide-Relevant Keywords
hang myself, stab myself, drug myself, ready to die, take my life, shoot myself, end this
pain, ending it all, stop the pain, never wake up, sleep forever, poison myself, killing myself,
to hurt myself, my death would, want to end it, cutting myself, die in my sleep, to live
anymore, want to be gone, take it anymore, better off dead, tired of living, take my own
life, not worth living, feeling hopeless, dont want to live, isnt worth living, dont want to
exist, dont want to go on, want it to be over, my life isnt worth, put an end to this, nothing
to live for, my life is pointless, dont want to wake up, not want to be alive, asleep and
never wake

Examples of Included Tweets
I’m going to take my life because I’m fucking over this shit.
I really wish I could go to sleep and never wake up.
brb killing myself.

Examples of Excluded Tweets
This movie is so good I don’t want it to end.
I don’t want to wake up at 4am tomorrow.

Table 1: Suicide-relevant keywords and phrases used for Twitter data collection. (Source [6] citing
[9])

Number of Users 1,060
Number of Tweets 1,399,148

Mean Number of Tweets per User 1,320
Median Number of Tweets per User 583

Table 2: Summary statistics for suicide-disclosure dataset.

2.2 Methods

Our analyses proceeded in two phases. In Phase I, we explore temporal-psycholinguistic clusters

post-disclosure within the set of Twitter users who have disclosed suicidality. We convert tweets
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Figure 1: Top 10 suicidal keywords within the set of suicidal disclosures. (N=1060) I’d like to
include a sample of tweets for the top 2-3 keywords exploded out to the side.

to timeseries via LIWC, then leverage univariate and multivariate timeseries clustering algorithms

for this purpose. This phase results in each user being assigned a label according to the cluster it

was assigned. In Phase II, we use these labels in a subsequent classification task, whereby we use

only pre-disclosure data to predict to which cluster a user belongs—i.e., to predict how a user would

respond to disclosing suicidality. These phases can be summarized as the timeseries clustering and

textual classification phases, respectively. In the following subsections, we discuss the methodology

for each.

2.3 Phase I. Timeseries Clustering

To construct psycholinguistic timeseries for each user, we use the Linguistic Inquiry and Word Count

(LIWC) version 2015 [25]. This is a widely used text analysis software that counts the percentage

of words in a given text that fall into a set of predefined categories or dimensions. These categories

capture various aspects of language including linguistic/grammatical dimensions such as function

words, pronouns, articles, verbs etc. as well as psychological aspects such as affective, cognitive,

and social processes. In version 2015, there are 74 such categories—a complete description of which

can be found in [25]. As with prior versions, these categories were developed hierarchically with

some dimensions subsumed under others. For example, the category anger is a subcategory of the
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broader category negative emotion which is a subcategory of the broader category affect. To

more specifically connect LIWC categories to psychological constructs, we considered only the 61

categories with no subcategories. I would like to explore higher-level categories as well. Perhaps

these would better capture ’multidimensional’ constructs.

We carefully construct the timeseries as follows. For each tweet in a user’s timeline (+/- 6

months from disclosure), we compute the LIWC scores for each category. (For example, the tweet

"brb killing myself" would receive a score of 0.33 for death, 0.33 for first-person-pronoun, and

scores of 0 for all remaining categories. [VERIFY]) Then, we aggregate scores by day. If there were

multiple tweets in a given day, we take the average of the scores. For those days with no tweets,

we impute the previous day’s scores (i.e., forward-fill missing values). We smooth the data using

LOESS smoothing [8] with a 7-day parameter (to account for weekly patterns) and normalize the

entire timeseries such that each has a zero-mean and unitary standard deviation. Then we crop the

timeseries from the day of disclosure to w weeks post-disclosure, where w is a hyperparameter. We

consider four timeseries lengths after disclosure: 1, 2, 3, and 4 weeks, corresponding to 7, 14, 21,

and 28 days, respectively. Thus, we have a 61-dimensional timeseries for each user with one data

point per day with lengths of 7, 14, 21, and 28 days post-disclosure. There is some information leak

via smoothing—I think you acknowledged this. Also, I think we should reconsider normalizing AD

data with BD data. We originally settled on this being an information leak, but on the contrary, it’s

really ’factoring out’ BD data from AD data—decoupling the two even more.

We then perform timeseries clustering on these timeseries. We use the tslearn Python package

[33] to perform the timeseries clustering, and we use the kmeans algorithm with Dynamic Time

Warping (DTW) distance measure, which allows for some amount of temporal distortion between

the two sequences [28]. Note that for the kmeans clustering algorithm, we need to specify the

number of clusters k as a hyperparameter. We consider 3 values for k: 2, 3, and 4. To evaluate

the quality of the clustering solutions, we used the silhouette score [29]. We discuss this metric

in more detail in the next section.

2.3.1 Silhouette Score

The silhouette score is a metric used to evaluate the quality of a clustering solution; it measures

how similar an object is to its own cluster compared to other clusters [29]. It ranges from -1
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to 1, with higher values indicating that the object is well matched to its own cluster and poorly

matched to neighboring clusters We also considered other clustering evaluation metrics–namely, the

Calinski-Harabasz [5] and the Davies-Bouldin [35] indices—but we choose the silhouette score as it

is bounded and thus more easily interpretable. Note that a silhouette score of 0 indicates that the

object is on the boundary between two clusters, and negative values indicate that the object may

be assigned to the wrong cluster. Mathematically, the silhouette score is defined as follows. Let ai

be the average distance between i and all other objects in the same cluster CI , and let bi be the

average distance between i and all objects in the nearest cluster CJ . Then, for a given object i, the

silhouette score is defined as follows.

si =
bi − ai

max{ai, bi}
(1)

with

ai =
1

|CI | − 1

∑
j∈CI ,j ̸=i

d(i, j) (2)

bi = min
J ̸=I

1

|CJ |
∑
j∈CJ

d(i, j) (3)

(4)

where d(i, j) is the some distance metric between objects i and j. In the context of timeseries

clustering, d(i, j) is the DTW distance measure. The silhouette score is illustrated graphically in

Figure 2 with a notional Euclidean dataset.

Note that the silhouette score is computed for each object in the sample. Thus, we can average

the silhouette scores by cluster (5) or take a global average (6) to get a single score for the entire

clustering solution.

s̄CI
=

1

|CI |
∑
i∈CI

si (5)

s̄ =
1

N

N∑
i=1

si (6)
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Figure 2: Illustration of the silhouette score components. ai denotes the average distance between
i and all other objects in the same cluster CI . bi denotes the average distance between i and all
objects in the nearest cluster CJ .

2.3.2 Feature Subset Selection

In the context of multivariate clustering, we recognize that some dimensions may be more conducive

to clustering than others. Consider again the notional Euclidean dataset now depicted in Figure 3.

We see that the data is separable along the horizontal axis but not along the vertical axis. Thus,

the vertical dimension does not contribute to the clustering solution. As the dimensionality of the

problem increases, each dimension that does not contribute to the clustering solution can only add

sparsity to the dataset, which can degrade the quality of the clustering solution. Given our modest

sample size (N=1060) and relatively high dimensionality (d = 61), we need a method for evaluating

the utility of a given dimension, such that we can select the optimal subset for clustering.

Figure 3: Some dimensions may be more conducive to clustering than others. (a) Raw
dataset, (b) clustering solution, and (c) clustering solution projected onto constituent dimensions.
The horizontal dimension is more conducive to clustering than the vertical dimension.
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We explored conventional dimensionality reduction methods, such as Principal Component Anal-

ysis (PCA), but we found that these methods do not preserve the interpretability of the dimensions,

which is essential if we are to connect our psycholinguistic clusters back to psychological constructs.

Thus, we developed a method to evaluate the utility of a given dimension, which we then used to

select an optimal subset of dimensions for further analysis. We refer to this method as projected

silhouette scores.

2.3.3 Feature Subset Selection via Projected Silhouette Scores

A graphical depiction of the projected silhouette score calculation is shown in Figure 4. In short,

the process involves first obtaining a multivariate clustering solution and projecting the data onto

the constituent dimensions. Then, the silhouette scores are computed for each sample where the

distances used to compute ai and bi are as measured on the projected dimensions. If there are d

dimensions in the data, this method returns d silhouette scores for every sample in the dataset.

Figure 4: Projected silhouette score calculation. From left to right: (1) Obtain clustering
solution and project data onto constituent dimensions. Then for each sample: (2) Compute silhou-
ette distances for each object as measured on the projected dimensions. (3) Compute the projected
silhouette scores for each dimension.

Once we have the projected silhouette scores for each dimension for every sample, we can ag-
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gregate by cluster to get average silhouette scores by both dimension and cluster. With this d × k

matrix of silhouette scores—where k is the number of clusters and d is the number of dimensions—

we can average across the d-axis to obtain scores by cluster, or we can average across the k-axis to

obtain scores by dimension. It’s this latter approach that we used to compute a single score for each

dimension to assess the quality of the clustering solution on that dimension/projection. Finally,

note that we can also take a global average of all samples to obtain a macro score for the entire

clustering solution.

Using these projected silhouette scores to evaluate the utility of a given dimension, we conducted

various feature subset selection (FSS) experiments to determine the optimal subset of LIWC features

(dimensions) to use for clustering. First, we simply took each LIWC dimension in isolation and per-

formed univariate timeseries clustering (UTSC). Then, we computed the projected silhouette scores

for each dimension and selected the dimension with the highest score. Second, we also conducted

multivariate timeseries clustering (MTSC) experiments. We quickly found that using all 61 dimen-

sions yielded invalid solutions (i.e., negative silhouette scores), thus we reduced the dimensionality

via a backward feature selection (BFS) algorithm. In the backward selection approach, we started

with all d = 61 dimensions and iteratively removed the worst performing dimension, as measured

by the projected silhouette score, until we reached a terminating condition. We employed two such

conditions: terminating with the highest scoring model (as measured by the macro silhouette score)

or terminating with the first valid model (i.e., with all positive silhouette scores). Note that with

either terminating condition, the final solution may be univariate.

For each experiment, we varied both the number of clusters k as well as the timeseries length

w post-disclosure. We considered a test matrix comprised of k = 2, 3, 4 clusters and w = 1, 2, 3, 4

weeks post-disclosure. We typically found increasing the number of clusters and/or the timeseries

length post-disclosure degrades cluster quality. That said, a longer timeseries or a model with

more clusters and/or dimensions may be more robust than the alternative. Thus in some cases, we

considered clustering solutions which may not have the highest macro silhouette score but may be

more robust and generalizable.

From these analyses, we found four candidate clustering solutions, see Table 3: two from the

univariate experiments and two from the multivariate experiments. (These will be presented more

thoroughly in Section 3.) We explored all these candidate clustering solutions as the labels for our
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classification task, though we found the best classification performance with Univariate Solution

#1, which incidentally was also the clustering solution with the highest macro silhouette score. In

Section 3, we discuss this solution in more detail.

Candidate Solution (clusters, weeks) LIWC Dim.(s) Silhouette
Univariate Solution #1 (k = 2, w = 2) filler 0.56
Univariate Solution #2 (k = 2, w = 1) anxiety 0.53
BFS Highest Scoring (k = 2, w = 1) focuspresent 0.43

BFS First Valid (k = 2, w = 1) verb, focuspresent, auxverb 0.25

Table 3: Candidate clustering solutions considered for use in the classification task. Univariate
Solution #1 was selected as the best candidate.

2.4 Phase II. Textual Classification

2.4.1 Feature Engineering

For the second phase of our analysis, we train several text classifiers to preempt to which temporal

cluster a user would belong using only pre-disclosure information. To mitigate concerns of possible

information leaks, we utilize different features for the classification task. Instead of LIWC scores, the

inputs to our classifiers are the raw text of the last M tweets before disclosure. We experimented with

different values of M and found optimal performance with M = 50 tweets before disclosure Perhaps

we include a figure for this in the supplementary materials. Then again, there are many small such

hyperparameters, and there’s no need to be exhaustive. As is standard practice, we lowercase all

text and remove all non-ASCII characters. We experimented with different vectorization schemes,

including bag-of-words (BOW) with or without Term Frequency-Inverse Document Frequency (TF-

IDF) normalization, but we found better performance without it. We also experimented with

different n-grams and found better performance with b-grams.

2.4.2 Model Development

We developed the following models spanning a range of complexity: logistic regression (LR), support

vector machine (SVM), random forest (RF), multilayer perceptron (MLP), and DistilBERT (BERT).

With the exception of DistilBERT, all models were trained using the scikit-learn Python package

[24]. DistilBERT was trained via the keras Python package [7]. We set up our classifiers to handle
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single-label, multi-class classification, although as shown in Table 3, all candidate clustering solutions

had k = 2 clusters. These models, along with key hyperparameters, are summarized in Table 4.

As will be discussed, we found largely similar results across all models with no one model starkly

outperforming the others.

Model Key Hyperparameters
LR solver=’lbfgs’

SVM kernel=’linear’
RF n_estimators=100, criterion=’gini’

MLP hidden_layer_sizes=(128,), activation=’relu’, solver=’lbfgs’
DistilBERT epochs=10, batch_size=16, learning_rate=3e-5

Table 4: Text classification models and key hyperparameters.

2.4.3 Model Training

An 80/20 train/test split was used for all models. For some clustering solutions, the classes (i.e.,

labels) were imbalanced. To address this, we employed two techniques to improve performance on

the minority class: (1) data augmentation via synonym replacement to balance the classes (training

data only) and (2) optimal threshold tuning.

Synonym replacement was performed with the NLPAug Python library [20]. We did not replace

stopwords or words less than 3 characters. For the training set, we augmented samples from the

minority class until the classes were balanced. For the test set, we employed test time augmentation

(TTA) to afford a more robust evaluation of our models. As a reminder, TTA is a technique

where we augment each test sample n times (in contrast to balancing the samples) and average the

predictions. We did this to maintain a representative distribution of classes while augmenting the

size of our test set. We chose n = 4, such that there were 5 total predictions per sample.

The optimal threshold was determined analytically using the g-means algorithm [18]. The g-

means algorithm is a method for determining the optimal threshold for a given classification problem.

It is based on the geometric mean of the True Positive Rate (TPR) and False Positive Rate (FPR).

The geometric mean is a measure of central tendency that is less sensitive to outliers than the

arithmetic mean. The optimal threshold that which maximizes the geometric mean of the TPR and

FPR. Mathematically, the optimal threshold is defined as follows.
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θ∗ = argmaxθ
√

TPR(θ)× FPR(θ) (7)

2.4.4 Model Evaluation

We used standard (imbalanced) classification performance metrics of precision, recall, F1 score,

and area under the receiver operating characteristic curve (AUC) to evaluate the models. Both

the class-specific and macro scores (average across classes) are reported. Finally, we evaluated our

models against three different baselines, one that always predicts the majority class (BL1), one that

randomly selects a label with equal probability (BL2), and one that predicts the majority class with

probability at parity with the class imbalance (BL3).

3 Results

3.1 Phase I: Timeseries Clustering Results

The results for both our univariate and multivariate timeseries clustering results are shown in Figures

5 and 6, respectively.

Figure 5: Univariate timeseries clustering results over the k×w test matrix. The reported
scores are macro silhouette scores (average across all samples), and the reported dimensions are
those with the highest macro silhouette score.

Consider first the univariate results in Figure 5. This figure reads as follows. Each cell in the

matrix represents a clustering solution with k clusters and w weeks post-disclosure. The reported

scores are the macro silhouette scores (average across all samples), and the reported dimensions are

those with the highest macro silhouette scores. We see that for almost all combinations of k and

w, the highest scoring LIWC dimension is the filler category. The sole exception is the k = 2
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(a) Highest scoring model. (b) First valid model.

Figure 6: Multivariate timeseries clustering results over the k × w test matrix using
feature subset selection (FFS) via projected silhouette scores. In (a), the FFS algorithm
terminates with the highest scoring model, and in (b), the FFS algorithm terminates with the first
valid model.

and w = 1 solution, in which anxiety is the highest. The highest scoring clustering solution is

the filler solution with k = 2 and w = 2 weeks post-disclosure with the anxiety solution with

k = 2 and w = 1 weeks post-disclosure coming in a close second. We extract these two solutions

as candidate solutions for the classification task. These correspond to Univariate Solutions #1 and

#2, respectively, in Table 3.

Now consider the multivariate timeseries clustering (MTSC) results in Figure 6. A reminder

that we performed feature subset selection (FSS) via projected silhouette scores as described in

Section 2.3.3 with two terminating conditions. Figure 6a depicts the results for the highest scoring

model terminating condition in which we systematically removed the worst dimension so long as the

macro silhouette score increased. Figure 6b depicts the results for the first valid model terminating

condition in which we removed the worst dimension until we reached a valid solution (i.e., all positive

silhouette scores).

Consider Figure 6a corresponding to the MTSC FFS solution using the highest scoring model

terminating condition. The salient features are three-fold. First, all solutions are 1-dimensional—

meaning that the FFS algorithm terminated with a univariate solution—though none of these

1-dimensional solutions surpass the best model from Figure 5. In other words, comparing Figures

5 and 6a element-wise, we see that the univariate solutions outperform the multivariate solutions.

This implies that at some point during the FFS algorithm, what would be the best-performing

dimension (e.g., filler) was removed. Second, there is much more variability in the final LIWC

dimension that emerged from the FSS algorithms compared to the purely univariate clustering
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experiments shown in Figure 5. Finally, the highest scoring model is the focuspresent solution

with k = 2 and w = 1 weeks post-disclosure. From this experiment, we extract this focuspresent

clustering model as a candidate solution for the classification task—this corresponds to BFS Highest

Scoring candidate in Table 3.

Figure 6b reads similarly. Many solutions are 1-dimensional—though again, none surpass the

best purely univariate solution (see 5). Here, we do find three multivariate solutions (cells (2, 1),

(2, 2), and (4, 2)). Given that we already have three univariate candidate solutions, we wanted

to consider a multivariate solution. Thus, we extract the verb, focuspresent, auxverb solution

with k = 2 and w = 1 weeks post-disclosure as a candidate solution for the classification task, which

corresponds to BFS First Valid candidate in Table 3.

We expand on each of these candidate solutions in Figure 7.

Figure 7 reads as follows. For each candidate solution, the left panel depicts the silhouette scores

by the LIWC dimension and cluster. The right panel depicts the silhouette score averaged across

the clusters. Perhaps, this should be a weighted average. Consider the filler solution in Figure 7a.

Here we see there is a dominant cluster (label 0) with roughly 73% of samples and a cluster-specific

silhouette score of 0.63. Recall that this score is the average silhouette score of all samples in that

cluster as measured on the filler projection. A score of 0.63 indicates that the average sample

in cluster 0 is well-matched to its cluster and poorly matched to neighboring clusters. The smaller

cluster (label 1) has 27% of samples with a cluster silhouette score of 0.49. The macro silhouette

score is 0.56. The remaining candidate solutions are read similarly.

The cluster centers for the best performing filler solution are depicted in Figure 8a along with

their 95% confidence intervals. We see that relative to the minority class (label 1), the majority

of users (label 0) exhibit lower usage of filler words for 2 weeks post-disclosure. As reflected by

the 95% confidence intervals (CI), there is some overlap between the two clusters, as is typical for

clustering solutions: some samples are on the boundary between clusters. This is further illustrated

in Figure 8b via silhouette plots for the filler solution. Here, we depict the sample silhouette score

for each sample in the dataset, sorted by cluster and then silhouette score. The horizontal dashed

line indicates the average silhouette score for that cluster. We see that the majority of samples

are in cluster 0 and that the average silhouette score for cluster 0 is higher than that of cluster

1. This is consistent with the silhouette scores presented in Figure 7a. Another thing we can try
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(a) Univariate Solution #1: filler

(b) Univariate Solution #2: anxiety

(c) BFS Highest Scoring: focuspresent

(d) BFS First Valid: verb, focuspresent, auxverb

Figure 7: Timeseries clustering results aggregated by dimension and cluster. I need to beautify these
figures.

for the classification phase is to drop the samples on the boundary between clusters and see if that

improves classification performance. For example, drop all samples with sample silhouette score <

some threshold.
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(a) Cluster centers for the filler dimension. (b) Silhouette plot for the filler dimension.

Figure 8: Cluster centers and silhouette plot for the filler dimension.

3.2 Phase II: Textual Classification Results

As a reminder, the classification task is to predict post-disclosure response—using the aforemen-

tioned clustering solutions as labels—using only pre-disclosure information.

Figure 9 shows the classification results in the form of Receiver Operator Characteristic (ROC)

curves for each candidate solution and all models. Recall that the ROC curve plots the true

positive rate (TPR) against the false positive rate (FPR) for various possible thresholds. (The

default threshold is typically 0.5 where logit scores above this threshold are assigned 1, and 0 if

below.) The area under the ROC curve (AUC) is a measure of the overall performance of the

model. It ranges from 0 to 1, with higher values indicating better performance. A model with no

skill, indicated by the diagonal dashed line, would receive an AUC score of 0.5. The closer the ROC

curve is to the top left corner, the better the model.

From Figure 9 we see that of all candidate clustering solutions identified in Table 3, the filler

is the only clustering solution in which all ROC curves consistently surpass the no skill baseline—

indicating that there is some predictive information in the pre-disclosure data that can predict the

post-disclosure filler clusters. In contrast, the other candidate solutions shown in Figures 9b, 9c,

and 9d, do not significantly outperform the baseline. Note that this does not suggest that these

clustering solutions are not valid or useful, but only that the pre-disclosure data does not contain

predictive information for these clusters. In other words, of the four temporal clusters identified in

Table 3, only the filler solution can be preempted. As a side note, we see that despite the wide

range of model complexities, all models perform similarly, with no one model starkly outperforming
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(a) filler (b) anxiety

(c) focuspresent (d) verb, focuspresent, auxverb

Figure 9: Text classification performance via Receiver Operator Characteristic (ROC) curves for all
models and for each candidate solution. Need to fix the fonts here. Also need to add BERT :P

the others.

These results for the filler solution are expanded in Table 5 via macro precision, recall, and

F1 scores. All models are evaluated against three baselines (BL). BL1 always predicts the majority

class, BL2 is a purely random classifier, and BL3 predicts the majority class with probability at

parity with the class imbalance. We see that all models surpass the baseline models, with the best

model (MLP) achieving a 16-point increase in macro F1 score over the best baseline model (BL1).

This MLP model also achieves the highest macro F1 score across all models.

We provided the class-specific performance of the best-performing model in Table 6. As a

reminder, the majority class (label 0), represents those users who exhibit lower usage of filler
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words post-disclosure. For the majority class, our best model achieves class-specific precision and

recall of 0.83 and 0.72, respectively. This indicates that of all samples predicted to be in the majority

class, 83% of them are actually in the majority class, and that of all samples in the majority class,

the model can correctly identify 72% of them. Like the other models, the MLP model performs

better on the majority class (0) than the minority class (1), which, due to the class imbalance, is

expected. That said, we saw 10-15 point increases in minority class precision and recall with the

addition of data augmentation and optimal threshold tuning with little to no impact on the majority

class performance. I should provide evidence for this in the supplementary material.

Model Precision Recall F1 AUC
BL1 0.52 0.53 0.48 0.51
BL2 0.47 0.47 0.47 0.55
BL3 0.37 0.50 0.43 0.50
LR 0.61 0.63 0.61 0.64

SVM 0.58 0.60 0.58 0.64
RF 0.60 0.62 0.60 0.61

MLP 0.60 0.63 0.64 0.66
DistilBERT 0.XX 0.XX 0.XX 0.XX

Table 5: Macro classification performance for all models evaluated against three base-
lines. BL1 always predicts the majority class, BL2 is a purely random classifier, and BL3 predicts
the majority class with probability at parity with the class imbalance.

Class Precision Recall F1 Support
0 0.83 0.72 0.77 147
1 0.42 0.59 0.49 51

Macro Avg. 0.63 0.65 0.64 198
Weighted Avg. 0.73 0.69 0.70 198

Table 6: Class-specific performance of the Multi-Layer Perceptron (MLP) for the clas-
sification task.

4 Discussion

In this work, we have shown that within the set of Twitter users who have disclosed some form

of suicidality, there are several distinct temporal clustering solutions that capture the different

ways people respond to self-disclosures of suicidality. One such clustering solution is characterized

by filler words (I mean, you know, like, uh, um). Our findings can be summarized as follows.
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Among those who have disclosed suicidality, a majority (73%) of them exhibit and maintain lower

usage of filler words following disclosure. Additionally, we have shown that for this filler clustering

solution, there is some predictive information in the pre-disclosure data that can preempt to which

post-disclosure cluster a user would belong. Together, these results suggest that (1) there is some

psychological connection between filler word usage and suicidality, specifically in the temporal

vicinity following self-disclosure, and (2) that it is possible to preempt how a user will respond

post-disclosure using only pre-disclosure information.

4.1 Interpretation of results

The connection between filler word usage and suicidality is not immediately obvious, but there

have been some studies that have explored this relationship. For example, a study by Coppersmith et

al. [11] on Twitter data from users who have attempted suicide found that filler words are among

the top LIWC constructs used more often by people who have attempted suicide. Furthermore, it

has been argued that people who use more tentative words (e.g., filler words) may not yet have

psychologically processed a prior event ( [27] citing [32]) enough such that they cannot form a

coherent narrative. In light of these studies, we offer two possible interpretations of our findings.

First, the latent variable separating the filler clusters may be related to self-harm or past

suicide attempts. Like in [11], in which increased filler word usage was associated with past suicide

attempts, the filler clusters identified in our work, may be reflecting a latent self-harm / past

suicide attempt variable. The class distribution of the filler clusters agrees with this supposition.

We find that only 27% of users exhibit significantly higher usage of filler words. This reflects the

fact that within the set of those who desire suicide, comparatively few can act on it [34].

Reproduce Figure 1 but break down by filler cluster? This is just my hunch that there is something

fundamentally different between ’sleep forever’ and ’hang myself’.

Another possible interpretation is that the filler usage is in direct response to the self-

disclosure. As per [32], the increased use of filler words may reflect a lack of processing of some

prior event which manifests as suppressed coherency. In our work, we see that the majority of users

do not exhibit increased filler word usage. The majority of users exhibit lower than average usage

of filler words following disclosure. While no causal claims can be made, our results suggest there

may be some therapeutic benefit to self-disclosing suicidality, particularly in the form of broad-
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casted self-disclosures on social media. This finding supports prior work that has investigated the

therapeutic benefit of such self-disclosures [17].

As a side note, it’s pretty interesting to me the filler words manifest on written text. Perhaps

this is just the casual nature of Twitter these days. I suspect this result would be amplified if we

were to look at the spoken word.

4.2 Theoretical and practical implications

From the timeseries clustering analysis, our results suggest that there is some psychological con-

nection between filler word usage and suicidality, specifically in the temporal vicinity following

self-disclosure, and we hope this work encourages further study in this area. If the connection be-

tween filler words and suicidality were a manifestation of some other latent variable (e.g., self-harm

/ past suicide attempts), then perhaps filler word usage could be used as a modest proxy for that la-

tent variable. Alternatively, if the change in filler word usage is in direct response to self-disclosures

of suicidality, then we may have one metric by which to quantify the therapeutic benefit of such

disclosures.

From classification analysis, our results suggest that not only are there distinct post-disclosure

groups (characterized by different amounts of filler words), but that these groups can also be pre-

empted using pre-disclosure information. Importantly, this means that if decreased filler word

usage is reflective of therapeutic benefit to self-disclosures of suicidality, then it is possible to pre-

dict whether someone would benefit from such disclosures with an estimated precision of 83$ (see

Table 6). This would enable targeted intervention strategies for those struggling with suicidality.

For example, were our model to preempt that an individual would benefit from disclosing their

suicidality, could we provide them with more resources to do so? Or, were our model to preempt

that an individual would not benefit from disclosing their suicidality, could we provide them with

alternative resources?

4.3 Limitations and future work

Our results should be considered in light of several limitations they share with other similar studies.

First, this study was non-intrusive, meaning that we did not reach out to any users to verify

suicidality or the authenticity of the disclosures. Second, and related to the first, we assumed that
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all suicide disclosures obtained from different keywords were created equal—for example, the phrase

“sleep and never wake up” was considered to be of the same nature as “shoot myself”. Thus, it is

possible that our sample contained a mixture of, using one theoretical suicide framework, active and

passive suicidal individuals. Further analysis is warranted to investigate the connection between

word choice in suicide disclosures and modes of suicidality (e.g. active vs. passive). Third, our

sample was limited to 1060 predominantly English-speaking Twitter users. Further study is needed

to generalize our results to larger populations and other platforms. Finally, in the absence of a

carefully curated control group, no causal claims can be made. However, the fact that our findings

are in line with supporting research (e.g., [11] and [27] citing [32]), lends credence to the connection

between suicidality and filler words, though further research is warranted to better understand this

relationship. For example, is filler word usage a manifestation of some other latent variable? Or are

changes in filler word usage in direct response to self-disclosures of suicidality?

5 Conclusion

In this work, we identified several psycholinguistic patterns post self-disclosure of suicidality on

social media. In particular, we found that a majority of users exhibit lower usage of filler words

following disclosure. Furthermore, we found that there is some predictive information in the pre-

disclosure data that can preempt to which post-disclosure cluster a user would belong. These results

suggest that (1) there is some psychological connection between filler word usage and suicidality,

specifically in the temporal vicinity following self-disclosure, and (2) that it is possible to preempt

how a user will respond post-disclosure using only pre-disclosure information. We hope this work

encourages further study in this area, and that it may be used to inform intervention strategies for

those struggling with suicidality.
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A Appendix

A.1 Appendix A: Timeseries Clustering Methodology

A.2 Appendix B: Textual Clustering Methodology
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